
IMT - Institutions Markets Technologies

Institute for Advanced Studies

Lucca

Cloud computing for

large scale data analysis

PhD Program in Computer Science and Engineering

XXIV Cycle

Gianmarco De Francisci Morales

gianmarco.dfmorales@imtlucca.it

Supervisor:

Dott. Claudio Lucchese

Co-supervisor:

Dott. Ranieri Baraglia

15 February 2010

Abstract

An incredible “data deluge” is currently drowning the world. Data sources
are everywhere, from the Web 2.0 to large scientific experiments, from social
networks to sensors. This huge amount of data is a valuable asset in our
information society.

Data analysis is the process of inspecting data in order to extract useful
information. Decision makers commonly use this information to drive their
choices. The quality of the information extracted by this process greatly
benefits from the availability of extensive data sets.

As we enter the “Petabyte Age”, traditional approaches for data analysis
begin to show their limits. “Cloud computing” is an emerging alternative
technology for large scale data analysis. Data oriented cloud systems com-
bine both storage and computing in a distributed and virtualized manner.
They are built to scale to thousands of computers, and focus on fault toler-
ance, cost effectiveness and ease of use.

This thesis aims to provide a coherent framework for research in the field
of large scale data analysis on cloud computing systems. The goal of our
research is threefold. I) To build a toolbox of algorithms and propose a way
to evaluate and compare them. II) To design extensions to current cloud
paradigms in order to support these algorithms. III) To develop methods
for online analysis of large scale data.

In order to reach our goal, we plan to adopt principles from database
research. We postulate that many results in this field are relevant also for
cloud computing systems. With our work, we expect to provide a com-
mon ground on which the database and cloud communities will be able to
communicate and thrive.

i

Contents

List of Figures iii

List of Tables iv

List of Acronyms v

1 Introduction 1
1.1 The “Big Data” Problem . 2
1.2 Methodology Evolution . 5

2 State of the Art 10
2.1 Technology Overview . 10
2.2 Comparison with PDBMS . 18
2.3 Case Studies . 21
2.4 Research Directions . 22

3 Research Plan 29
3.1 Research Problem . 29
3.2 Thesis Proposal . 31

Bibliography 33

ii

List of Figures

1.1 The Petabyte Age . 2
1.2 Data Information Knowledge Wisdom hierarchy 3

2.1 Data oriented cloud computing architecture 11
2.2 The MapReduce programming model 15

iii

List of Tables

2.1 Major cloud software stacks 12
2.2 Relative advantages of PDBMS and Cloud Computing 20

iv

List of Acronyms

ACID Atomicity, Consistency, Isolation, Durability 19

BASE Basically Available, Soft state, Eventually consistent 19

DAG Direct Acyclic Graph . 16

DBMS Database Management System. 5

DHT Distributed Hash Table . 14

DIKW Data Information Knowledge Wisdom . 3

GFS Google File System . 12

HDFS Hadoop Distributed File System . 12

IaaS Infrastructure as a Service . 8

MPI Message Passing Interface. .8

MR MapReduce. .14

OLAP Online Analysis Processing . 6

OLTP Online Transaction Processing . 6

PaaS Platform as a Service . 8

PDBMS Parallel Database Management System . 6

PDM Parallel Disk Model .1

PVM Parallel Virtual Machine . 8

RAM Random Access Machine. .1

SaaS Software as a Service . 8

SOA Service Oriented Architecture . 8

SQL Structured Query Language. .6

UDF User Defined Function . 7

v

Chapter 1

Introduction

How would you sort 1GB of data? Today’s computers have enough mem-
ory to hold this quantity of data, so the best way is to use an in-memory
algorithm like quicksort. What if you had to sort 100 GB of data? Even if
systems with more than 100 GB of memory exist, they are by no means com-
mon or cheap. So the best solution is to use a disk based sort like mergesort

or greedsort. However, what if you had 10 TB of data to sort? Today’s hard
disks are usually 1 to 2 TB in size, which means that just to hold 10 TB
of data we need multiple disks. In this case the bandwidth between mem-
ory and disk would probably become a bottleneck. So, in order to obtain
acceptable completion times, we need to employ multiple computing nodes
and a parallel algorithm like bitonic sort.

This example illustrates a very general point: the same problem at dif-
ferent scales needs radically different solutions. In many cases, the model
we use to reason about the problem needs to be changed. In the example
above, the Random Access Machine (RAM) model [59] should be used in the
former case, while the Parallel Disk Model (PDM) [67] in the latter. The
reason is that the simplifying assumptions made by the models do not hold
at every scale. Citing George E. P. Box “Essentially, all models are wrong,
but some are useful” [7], and arguably “Most of them do not scale”.

For data analysis, scaling up of data sets is a “double edged” sword.
On the one hand, it is an opportunity because “no data is like more data”.
Deeper insights are possible when more data is available. Oh the other hand,
it is a challenge. Current methodologies are often not suitable to handle very
large data sets, so new solutions are needed.

1

1.1 The “Big Data” Problem 2

1.1 The “Big Data” Problem

The issues raised by large data sets in the context of analytical applications
are becoming ever more important as we enter the “Petabyte Age”. Fig-
ure 1.1 shows some of the data sizes for today’s problems [5]. The data sets
are orders of magnitude greater than what fits on a single hard drive, and
their management poses a serious challenge. Web companies are currently
facing this issue, striving to find efficient solutions. The ability to analyze
or manage more data is a distinct competitive advantage. This problem has
been labeled in various ways: petabyte scale, web scale or “big data”.

Figure 1.1: The Petabyte Age

Currently, an incredible “data deluge” is drowning the world with data.
The quantity of data we need to sift through every day is enormous, just
think of the results of a search engine query. They are so many that we
are not able to examine all of them, and indeed the competition on web
search now focuses on ranking the results. This is just an example of a more
general trend.

Data sources are everywhere. Web users produce vast amounts of text,
audio and video contents in the so called Web 2.0. Relationships and tags in
social networks create large graphs spanning millions of vertexes and edges.

Scientific experiments are another huge data source. The Large Hadron
Collider (LHC) at European Council for Nuclear Research (CERN) is ex-
pected to generate around 50 TB of raw data per day. The Hubble telescope

1.1 The “Big Data” Problem 3

captured hundreds of thousands astronomical images, each hundreds of
megabytes large. Computational biology experiments like high-throughput
genome sequencing produce large quantities of data that require extensive
post-processing.

In the future, sensors like Radio-Frequency Identification (RFID) tags
and Global Positioning System (GPS) receivers will spread everywhere.
These sensors will produce petabytes of data just as a result of their sheer
numbers, thus starting “the industrial revolution of data” [33].

Figure 1.2: Data Information Knowledge Wisdom hierarchy

But why are we interested in data? It is common belief that data with-
out a model is just noise. Models are used to describe salient features in the
data, which can be extracted via data analysis. Figure 1.2 represents the pop-
ular Data Information Knowledge Wisdom (DIKW) hierarchy [56]. In this
hierarchy data stands at the lowest level and bears the smallest level of un-
derstanding. Data needs to be processed and condensed into more connected
forms in order to be useful for event comprehension and decision making.
Information, knowledge and wisdom are these forms of understanding. Re-
lations and patterns that allow to gain deeper awareness of the process that

1.1 The “Big Data” Problem 4

generated the data, and principles that can guide future decisions.
The large availability of data potentially enables more powerful analysis

and unexpected outcomes. For example, Google can detect regional flu
outbreaks up to ten days faster than the Center for Disease Control and
Prevention by monitoring increased search activity for flu-related topics [29].
Chapter 2 presents more examples of interesting large scale data analysis
problems.

But how do we define “big data”? The definition is of course relative and
evolves in time as technology progresses. Indeed, thirty years ago one ter-
abyte would be considered enormous, while today we are commonly dealing
with such quantity of data.

According to Jacobs [37], big data is “data whose size forces us to look
beyond the tried-and-true methods that are prevalent at that time”. This
means that we can call “big” an amount of data that forces us to use or create
innovative research products. In this sense big data is a driver for research.
The definition is interesting because it puts the focus on the subject who
needs to manage the data rather than on the object to be managed. The
emphasis is thus on user requirements such as throughput and latency.

Let us highlight some of the requirements for a system used to perform
data intensive computing on large data sets. Given the effort to find a novel
solution and the fact that data sizes are ever growing, this solution should be
applicable for a long period of time. Thus the most important requirement
a solution has to satisfy is scalability.

Scalability is defined as “the ability of a system to accept increased input
volume without impacting the profits”. This means that the gains from the
input increment should be proportional to the increment itself. This is a
broad definition used also in other fields like economy, but more specific
ones for computer science are provided in the next section.

For a system to be fully scalable, its scale should not be a design parame-
ter. Forcing the system designer to take into account all possible deployment
sizes for a system, leads to a scalable architecture without fundamental bot-
tlenecks. We define such a system “scale-free”.

However, apart from scalability, there are other requirements for a large
scale data intensive computing system. Real world systems cost money to
build and operate. Companies attempt to find the most cost effective way
of building a large system because it usually requires a significant money

1.2 Methodology Evolution 5

investment. Partial upgradability is an important money saving feature, and
is more easily attained with a loosely coupled system. Operational costs like
personnel salary (i.e. system administrators) account for a large share of the
budget of IT departments. To be profitable, large scale systems must require
as little human intervention as possible. Therefore autonomic systems are
preferable, systems that are self-configuring, self-tuning and self-healing. In
this respect, a key property is fault tolerance.

Fault tolerance is “the property of a system to operate properly in spite
of the failure of some of its components”. When dealing with a large system,
the probability that a disk breaks or a server crashes raises dramatically:
it is the norm rather than the exception. A performance degradation is
acceptable as long as the systems does not halt completely. A denial of
service of a system usually has a negative economic impact, especially for
Web-based companies. The goal of fault tolerance techniques is to create a
highly available system.

To summarize, a large scale data analysis system should be scalable, cost
effective and fault tolerant.

1.2 Methodology Evolution

Providing data for analysis is a problem that has been extensively studied.
Many different solutions exist. However, the usual approach is to employ a
Database Management System (DBMS) to store and manage the data.

DBMSs were born in the ’60s and used a navigational model. The so
called CODASYL approach, born together with COBOL, used a hierarchical
or network schema for data representation. The user had to explicitly tra-
verse the data using links to find what he was interested in. Even simple
queries like “Find all people in India” were prohibitively expensive as they
required to scan all the data.

The CODASYL approach was partly due to technological limits: the most
common mass storage technology at the time was tape. Magnetic tapes have
very high storage density and throughput for linear access, but extremely
slow random access performance due to large seek times. Notice that this
description fits almost perfectly current disk technology, and provides the ra-
tionale for some of the new developments in data management systems [31].

During the ’70s Codd [13] introduced the famous relational model that

1.2 Methodology Evolution 6

is still in use today. The model introduces the familiar concepts of tabular
data, relation, normalization, primary key, relational algebra and so on.
The model had two main implementations: IBM’s System R and Berkley’s
INGRES. All the modern databases can be in some way traced back to
these two common ancestors in terms of design and code base [69]. For this
reason DBMSs bear the burden of their age and are not always a good fit
for today’s applications.

The original purpose of DBMSs was to process transactions in business
oriented processes, also known as Online Transaction Processing (OLTP).
Queries were written in Structured Query Language (SQL) and run against
data modeled in relational style. On the other hand, currently DBMSs
are used in a wide range of different areas: besides OLTP, we have Online
Analysis Processing (OLAP) applications like data warehousing and busi-
ness intelligence, stream processing with continuous queries, text databases
and much more [60]. Furthermore, stored procedures are used instead of
plain SQL for performance reasons. Given the shift and diversification of
application fields, it is not a surprise that most existing DBMSs fail to meet
today’s high performance requirements [61, 62].

High performance has always been a key issue in database research.
There are usually two approaches to achieve it: vertical and horizontal. The
former is the simplest, and consists in adding resources (cores, memory,
disks, etc...) to an existing system. If the resulting system is capable of
taking advantage of the new resources it is said to scale up. The inherent
limitation of this approach is that the single most powerful system available
on earth could be not enough. The latter approach is more complex, and
consists in adding in parallel new separate systems to the existing one. If
higher performance is achieved the systems is said to scale out. The multiple
systems are treated as a single logical unit. The result is a parallel system
with all the (hard) problems of concurrency.

Typical parallel systems are divided into three categories according to
their architecture: shared memory, shared disk or shared nothing. In the
first category we find Symmetric Multi-Processors (SMPs) and large parallel
machines. In the second one we find rack based solutions like Storage Area
Network (SAN) or Network Attached Storage (NAS). The last category
includes large commodity clusters interconnected by a local network and is
usually deemed the most scalable [63].

1.2 Methodology Evolution 7

Parallel Database Management Systems (PDBMSs) [21] are the result
of these considerations. They are an attempt to achieve high performance
in a parallel fashion. Almost all the designs of a PDBMS use the same basic
dataflow pattern for queries and horizontal partitioning of the tables on a
cluster of shared nothing machines [23].

Unfortunately, PDBMS are very complex systems. They need fine tun-
ing of many “knobs” and feature simplistic fault tolerance policies. In the
end, they do not provide the user with adequate ease of installation and
administration (the so called “one button” experience), and flexibility of use
(poor support of User Defined Functions (UDFs)).

To date, despite numerous claims about their scalability, PDBMSs have
proven to be profitable only up to the tens or hundreds of nodes. It is
legitimate to question whether this is the result of a fundamental theoretical
problem in the parallel approach.

Parallelism has some well known limitations. Amdahl [4] in his 1967
paper argued in favor of a single-processor approach to achieve high perfor-
mance. Indeed, the famous “Amdahl’s law” states that the parallel speedup
of a program is inherently limited by the inverse of his serial fraction, the
non parallelizable part of the program. His law also defines the concept of
strong scalability, in which the total problem size is fixed. Equation 1.1 spec-
ifies Amdahl’s law for N parallel processing units where rs and rp are the
serial and parallel fraction of the program measured on a single processor
(rs + rp = 1)

SpeedUp(N) =
1

rs +
rp
N

(1.1)

Nonetheless, parallel techniques are justified from the theoretical point
of view. Gustafson [32] in 1988 re-evaluated Amdahl’s law using different
assumptions, i.e. the problem sizes increases with the computing units. In
this case the problem size per unit is fixed. Under these assumptions the
achievable speedup is almost linear, as stated in Equation 1.2. In this case r′s
and r′p are the serial and parallel fraction measured on the parallel system
instead of the serial one. The equation also defines the concept of scaled

speedup or weak scalability.

SpeedUp(N) = r′s + r′p ∗N = N + (1−N) ∗ r′s (1.2)

1.2 Methodology Evolution 8

Even though the two formulations are mathematically equivalent [58],
they make drastically different assumptions. In our case the size of the
problem is large and ever growing. Hence it seems appropriate to adopt
Gustafson’s point of view, which justifies the parallel approach.

There are also practical considerations that corroborate parallel meth-
ods. Physical limits for processors have been reached. Chip makers are no
more raising clock frequencies because of heat dissipation and power con-
sumption concerns. As a result, they are already introducing parallelism at
the CPU level with manycore processors [35]. In addition, the most cost ef-
fective option to build a large system is to use many commodity inexpensive
components instead of deploying high-end servers. These issues have led to
a renewed popularity of parallel computing.

Parallel computing has a long history. It has traditionally focused on
“number crunching”. Common applications were tightly coupled and CPU
intensive (e.g. large simulations or finite element analysis). Control-parallel
programming interfaces like Message Passing Interface (MPI) or Parallel
Virtual Machine (PVM) are still the de-facto standard in this area. These
systems are notoriously hard to program. Fault tolerance is difficult to
achieve and scalability is an art. They require explicit control of paral-
lelism and are sometimes referred to as “the assembly language of parallel
computing”.

In stark contrast with this legacy, a new class of parallel systems has
emerged: cloud computing. Cloud systems focus on being scale-free, fault
tolerant, cost efficient and easy to use.

Cloud computing is the result of the convergence of three technologies:
grid computing, virtualization and Service Oriented Architecture (SOA).
The aim of cloud computing is thus to offer services on a virtualized parallel
back-end system. These services are divided in categories according to the
resource they offer: Infrastructure as a Service (IaaS) like Amazon’s EC2 and
S3, Platform as a Service (PaaS) like Google’s App Engine and Microsoft’s
Azure Services Platform, Software as a Service (SaaS) like Salesforce, OnLive
and virtually every Web application.

Lately cloud computing has received a substantial amount of attention
from industry, academia and press. As a result, the term “cloud computing”
has become a buzzword, overloaded with meanings. There is lack of consen-
sus on what is and what is not cloud, as even simple client-server applications

1.2 Methodology Evolution 9

on portable devices are sometimes included in the category [17]. As usual,
the boundaries between similar technologies are fuzzy, so there is no clear
distinction among grid, utility, cloud, and other kind of computing technolo-
gies. In spite of the many attempts to describe cloud computing [48], there
is no widely accepted definition.

Even without a clear definition, there are some properties that we think
a cloud computing system should have. Each of the three aforementioned
technologies brings some feature to cloud computing. According to SOA
principles, a cloud system should be a distributed system, with separate,
loosely coupled entities collaborating among each other. Virtualization (not
intended just as x86 virtualization but as a general abstraction of comput-
ing, storage and communication facilities) provides for location, replication

and failure transparency. Finally, grid computing endorses scalability. All
these properties are clearly well grounded in parallel and distributed sys-
tems research. Indeed, cloud computing can be thought of as the current
step in this area.

Within cloud computing, there is a subset of technologies that is more
geared towards data analysis. These systems are aimed mainly at I/O in-
tensive tasks, are optimized for streaming data from disk drives and use
a data-parallel approach. An interesting feature is they are “dispersed”:
computing and storage facilities are distributed, abstracted and intermixed.
These systems attempt to move computation as close to data as possible
because moving large quantities of data is expensive. Finally, the burden
of dealing with the issues caused by parallelism is removed from the pro-
grammer. This provides the programmer with a scale-agnostic programming
model.

Data oriented cloud computing systems are a natural alternative to
PDBMSs when dealing with large scale data. As such, a fierce debate is
currently taking place, both in industry and academy, on which is the best
tool.

The remainder of this document is organized as follows. Chapter 2 gives
a technical and research overview of data oriented cloud systems. To set
the frame for the thesis dissertation we show a comparison with PDBMS.
Finally, Chapter 3 describes the research proposal in greater detail.

Chapter 2

State of the Art

Large scale data challenges have spurred a large number of projects on data
oriented cloud computing systems. Most of these projects feature important
industrial partners alongside academic institutions. Big internet companies
are the most interested in finding novel methods to manage and use data.
Hence, it is not surprising that Google, Yahoo!, Microsoft and few others
are leading the trend in this area.

In the remainder of this document we will focus only on the data oriented
part of cloud technologies, and will simply refer to them as cloud comput-
ing. In the next sections we will describe the technologies that have been
developed to tackle large scale data intensive computing problems, and the
research directions in this area.

2.1 Technology Overview

Even though existing cloud computing systems are very diverse, they share
many common traits. For this reason we propose a general architecture of
cloud computing systems, that captures the commonalities in the form of a
multi-layered stack. Figure 2.1 shows the proposed software stack of a cloud
system.

At the lowest level we find a coordination level that serves as a basic
building block for the distributed services higher in the stack. This level
deals with basic concurrency issues.

The distributed data layer builds on top of the coordination one. This
layer deals with distributed data access, but unlike a traditional distributed
file system it does not offer standard POSIX semantics for the sake of per-

10

2.1 Technology Overview 11

Coordination

Computation
High Level
Languages

Distributed
Data

Data
Abstraction

Figure 2.1: Data oriented cloud computing architecture

formance. The data abstraction layer is still part of the data layer and offers
different, more sophisticated interfaces to data.

The computation layer is responsible for managing distributed process-
ing. As with the data layer, generality is sacrificed for performance. Only
embarrassingly data parallel problems are commonly solvable in this frame-
work. The high level languages layer encompasses a number of languages,
interfaces and systems that have been developed to simplify and enrich ac-
cess to the computation layer.

Table 2.1 reports some of the most popular cloud computing softwares
classified according to the architecture of Figure 2.1. Google has described
his software stack in a series of published papers, but the software itself is not
available outside the company. Some independent developers, later hired by
Yahoo!, implemented the stack described by Google and released the project
under an open-source license. Hadoop [6] is now an umbrella project of
the Apache Software Foundation and is used and developed extensively by
Yahoo!. Microsoft has released part of its stack in binary format, but the

2.1 Technology Overview 12

Google Yahoo! Microsoft Others

High Level
Languages

Sawzall Pig Latin
DryadLINQ
SCOPE

Hive
Cascading

Computation MapReduce Hadoop Dryad

Data
Abstraction

BigTable
HBase
PNUTS

Cassandra
Voldemort

Distributed
Data

GFS HDFS Cosmos Dynamo

Coordination Chubby Zookeeper

Table 2.1: Major cloud software stacks

software is proprietary.
In the coordination layer we find two implementations of a consensus

algorithm. Chubby [8] is a distributed implementation of Paxos [42] and
Zookeeper is Hadoop’s re-implementation in Java. They are centralized
services for maintaining configuration information, naming, providing dis-
tributed synchronization and group services. All these kinds of services are
used by distributed applications.

Chubby has been used to build a Domain Name System (DNS) alterna-
tive, to build a replicated distributed log and as a primary election mech-
anism. Zookeeper has also been used as a bootstrap service locator and
a load balancer. The main characteristics of these services are very high
availability and reliability, sacrificing high performance. Their interface is
similar to a distributed file system with whole-file reads and writes (usually
metadata), advisory locks and notification mechanisms. They have solid
roots in distributed systems research.

On the next level, the distributed data layer presents different kinds
of data storages. A common feature in this layer is to avoid full POSIX
semantic in favor of simpler ones. Furthermore, consistency is somewhat
relaxed for the sake of performance.

Google File System (GFS) [27], Hadoop Distributed File System (HDFS)
and Cosmos are all distributed file systems geared towards data streaming.
They are not general purpose file systems. For example, in HDFS files can
only be appended but not modified. They use large blocks of 64 MB or

2.1 Technology Overview 13

more, which are replicated for fault tolerance.
GFS uses a master-slave architecture where the master is responsible

for metadata operations while the slaves (chunkservers) are used for data.
It provides loose consistency guarantees, for example a record might be
appended more than once (at least once semantics). GFS is implemented as
a user space process and stores the data chunks as lazily allocated files on
a local file system. HDFS basically implements the same architecture. In
both systems the master (namenode in HDFS terminology) is a single point
of failure.

Cosmos [9]is Microsoft’s internal file system for cloud computing. There
is not much public information available about this component. It is an
append-only file system optimized for streaming of petabyte scale data. Data
is replicated for fault tolerance and compressed for efficiency. From this
scarce information it looks like a re-implementation of Google’s GFS.

Dynamo [20] is a storage service used at Amazon. It is a key-value store
used for low latency access to data. It has a peer-to-peer (P2P) architec-
ture that uses consistent hashing to spread the load and a gossip protocol
to guarantee eventual consistency [68]. Amazon’s shopping cart and other
services (e.g. S3) are built on top of Dynamo.

The systems described above are, with the exception of Dynamo, mainly
append-only and stream oriented file systems. However, it is sometimes
convenient to access data in a different fashion. For example using a more
elaborate data model or enabling read/write operations. For these reasons
data abstractions are usually built on top of the aforementioned systems.

BigTable [10] and HBase [6] are non-relational databases. They are ac-
tually multidimensional, sparse, sorted maps, useful for semi-structured or
non structured data. As in many other similar systems, access to data is
provided via primary key only, but each key can have more “columns”. The
data are stored column-wise, which allows for a more efficient representation
(“null” values are stripped out) and for better compression (data is homo-
geneous). The data is also partitioned in tablets and distributed over a large
number of tablet servers. These systems provide efficient read/write access
built on top of their respective file system (GFS and HDFS) with support for
versioning, timestamps and single row transactions. Google Earth, Google
Analytics and many other user-facing services use this kind of storage.

The fundamental data structure of BigTable and HBase is a SSTable. It

2.1 Technology Overview 14

is the underlying file format used to store data. SSTables are designed so
that a data access requires a single disk access. An SSTable is never changed.
If new data is added a new SSTable is created and they are eventually “com-
pacted”. The immutability of SSTable is at the core of data checkpointing
and recovery routines, and resembles the design of a log structured file sys-
tem.

PNUTS [16] is a similar storage service developed by Yahoo! outside the
Hadoop project. PNUTS allows key-value based lookup where values may
be structured as typed columns or “blobs”. PNUTS users may control the
consistency of the data they read using “hints” to require the latest version
or a potentially stale one. Data is split into range or hash tablets by a tablet
controller. This layout is soft-cached in message routers that are used for
queries. The primary use of PNUTS is in web applications like Flickr.

PNUTS uses a “per-record timeline” consistency model which guaran-
tees that every replica will apply operations to a single record in the same
order. This is stronger than eventual consistency and relies on a guaranteed,
totally-ordered-delivery message brokering service. Each record is geograph-
ically replicated around several data centers. The message broker does not
guarantee in order delivery between different data centers. Thus each record
has a single master copy which is updated by the broker, committed and
then published to replicas. This makes sure that every update gets replayed
in a canonical order at each replica. In order to reduce latency the mastering
of the replica is switched according to changes in access location.

Cassandra [25] is a Facebook project (now open-sourced into Apache
incubator) that aims to build a system with a BigTable-like interface on
a Dynamo-style infrastructure. Voldemort [44] is an open-source non re-
lational database built by LinkedIn. It is basically a large persistent Dis-
tributed Hash Table (DHT). This area has been very fruitful and there
are many other products, but all of them share in some way the features
sketched in these paragraphs: distributed architecture, non relational model,
no ACID guarantees, limited relational operations (no join).

In the computation layer we find paradigms for large scale data intensive
computing. They are mainly dataflow paradigms with support for auto-
mated parallelization. We can recognize the same pattern found in previous
layers also here: trade off generality for performance.

MapReduce (MR) [19] is a distributed computing engine inspired by

2.1 Technology Overview 15

Figure 2.2: The MapReduce programming model

concepts of functional languages. More specifically, MR is based on two
higher order functions: Map and Reduce. The Map function reads the input
as a list of key-value pairs and applies a UDF to each pair. The result is a
second list of intermediate key-value pairs. This list is sorted and grouped by
key and used as input to the Reduce function. The Reduce function applies
a second UDF to every intermediate key with all its associated values to
produce the final result. The two phases are non overlapping as detailed in
Figure 2.2.

The Map and Reduce function are purely functional and thus without
side effects. This is the reason why they are easily parallelizable. Fur-
thermore, fault tolerance is easily achieved by just re-executing the failed
function. The programming interface is easy to use and does not allow any
explicit control of parallelism. Even though the paradigm is not general
purpose, many interesting algorithms can be implemented on it. The most
paradigmatic application is building the inverted index for Google’s search
engine. Simplistically, the crawled and filtered web documents are read from
GFS, and for every word the couple 〈word, doc id〉 is emitted in the Map
phase. The Reduce phase needs just to sort all the document identifiers
associated with the same word 〈word, [doc id1, doc id2, ...]〉 to create the
corresponding posting list.

2.1 Technology Overview 16

Hadoop [6] is a Java implementation of MapReduce, which is roughly
equivalent to Google’s version, even though there are many reports about
the performance superiority of the latter [30]. Like the original MR, it uses
a master-slave architecture.

The Job Tracker is the master to which client applications submit MR
jobs. It pushes tasks (job splits) out to available slave nodes on which a
Task Tracker runs. The slave nodes are also HDFS chunkservers, and the
Job Tracker knows which node contains the data. The Job Tracker thus
strives to keep the jobs as close to the data as possible. With a rack-aware
filesystem, if the work cannot be hosted on the actual node where the data
resides, priority is given to nodes in the same rack. This reduces network
traffic on the main backbone network for the Map phase.

Mappers write intermediate values locally on disk. Each reducer in turn
pulls the data from various remote disks via HTTP. The partitions are al-
ready sorted by key by the mappers, so the reducer just merge-sorts the
different partitions to bring the same keys together. These two phases are
called shuffle and sort and are also the most expensive in terms of I/O oper-
ations. In the last phase the reducer can finally apply the Reduce function
and write the output to HDFS.

Dryad [36] is Microsoft’s alternative to MapReduce. Dryad is a dis-
tributed execution engine inspired by macro-dataflow techniques and mas-
sively data-parallel shader programming languages. Program specification
is done by building a Direct Acyclic Graph (DAG) whose vertexes are op-
erations and whose edges are data channels. The programmer specifies the
DAG structure and the functions (standard or user defined) to be executed
in each vertex. The system is responsible for scheduling vertex execution
on a shared nothing cluster, keeping track of dependencies, deciding which
channels to use (shared memory queues, TCP pipes or files), deciding the
parallelism degree of operations and which vertexes to aggregate in a single
process. An interesting characteristic is that the programming paradigm
of Dryad is more general than MapReduce. Indeed MR workflows can be
expressed in Dryad but not vice-versa.

At the last level we find high level interfaces to these computing systems.
These interfaces are meant to simplify writing programs for cloud systems.
Even though this task is easier than writing custom MPI code, MapReduce,
Hadoop and Dryad still offer fairly low level programming interfaces, which

2.1 Technology Overview 17

require the knowledge of a full programming language (C++ or Java). The
interfaces in this level usually allow even non programmers to take advantage
of the cloud infrastructure.

Sawzall [54] is a high level, parallel data processing scripting language
built on top of MR. Its intended target are filter and aggregation scripts of
record sets, akin to the AWK scripting language. The user can employ a set
of predefined aggregators like counting, sampling and histograms. The script
needs only to declare the desired aggregators, implement the filtering logic,
which is applied record by record, and emit partial results to the aggregators.
The resulting language is at the same time expressive and simple. It forces
the programmer to think one record at a time, and allows the system to
massively parallelize the computation without any programming effort.

Pig Latin [51] is a more sophisticated language for general data manip-
ulation. It is an interpreted imperative language which is able to perform
filtering, aggregation, joining and other complex transformations. Pig Latin
statements produce Hadoop jobs that are executed in parallel. Pig Latin
has a rich nested data model, fully supports UDFs and aims for the “sweet
spot” between SQL and MR.

The authors claim and report witnesses that an imperative language (i.e.
Pig Latin) is simpler to understand and program than a declarative one (i.e.
SQL). At the same time Pig Latin uses relational-algebra-style primitives
that can exploit the same kind of optimizations found in databases. Nev-
ertheless the users retains more control over the way their programs are
executed. Somewhat disappointingly, Pig Latin has no loop and conditional
statements, and thus suffers from the same problem of “awkward embed-
ding” of SQL. The authors are working on a Pig-aware version of scripting
languages like Perl and Python to overcome this problem.

DryadLINQ [71] is a set of language extensions and a corresponding com-
piler. The compiler trasforms Language Integrated Query (LINQ) expres-
sions into Dryad plans. LINQ is a query language integrated in Microsoft’s
.NET framework. It is based on lambda-expressions and thus it is easily par-
allelized. It is strongly typed and has both an imperative (object-oriented)
and a declarative (SQL-like) version.

LINQ expressions are compiled to Dryad execution plans lazily. The
expressions are decomposed into subexpression each to be run into a sep-
arate Dryad vertex. The optimizer removes redundant operations, pushes

2.2 Comparison with PDBMS 18

aggregation upstream and merges multiple operators in pipelines where pos-
sible. The DAG runs in parallel and once successfully competed the data is
available to the client through an iterator, akin to a normal SQL recordset.

SCOPE [9] is a declarative scripting language for Dryad based on SQL.
It has the same tabular data model and implements most of its commands
(select, group by, join, etc..). It also provides some more complex opera-
tions like preprocessing, reduction and combination of rows. Programmers
can write UDFs and data adapters using C#. The code can be directly
embedded into the scripts and the scripts themselves can be imported and
parameterized. A scope script compiles to a DAG and exectutes on Dryad.

Hive [65] is a Facebook project to build a data warehousing system on
top of Hadoop. It employs a tabular data model where the tables can be
partitioned on columns and bucketed to different files. The files reside on
HDFS, each table in a different directory. The metadata (schemas, location,
statistics and auxiliary information) is kept separately in a relational DBMS
called Hive-Metastore. This speeds up metadata-only operations but compli-
cates consistency. Hive employs a declarative query language called HiveQL

derived from SQL. However custom MR scripts can be easily plugged in.
Queries are compiled to a DAG of MR jobs. Hive is still a young project and
still lacks many features like a cost-based optimizer and columnar storage.

Cascading [14] is a Java API for creating complex and fault tolerant
data processing workflows on top of Hadoop. Cascading uses “tuples and
streams” as data containers and a “pipe and filters” model for defining data
processes. It supports splits, joins, grouping, and sorting but also custom
MR operations.

2.2 Comparison with PDBMS

How do cloud technologies compare with their direct competitors, PDBMSs?
To put this comparison in the right perspective we would like to recall the
“CAP theorem” [26, 28] stated by Fox and Brewer. The theorem says that
in every system we can get at most two out of these three properties: Con-

sistency, Availability, Partition tolerance. We can build systems with different
features depending on which properties we choose. If we choose Consistency
and Availability we can build a single database or a cluster database using
two phase commit (which is not partition tolerant). To have Consistency

2.2 Comparison with PDBMS 19

and Partition tolerance we can employ distributed locking and consensus
algorithms to build a distributed database. Availability is reduced because
of blocking and unavailability of minority partitions. Finally, if we are ready
to give up Consistency to have a highly available and partition tolerant sys-
tem, we can build systems like the DNS. In this case we need to employ
techniques that deal with inconsistency like leases and conflict resolution.

Partition tolerance is required to build large scale distributed systems,
where network failure is guaranteed. Cloud systems usually prefer having
high availability for economic reasons, especially if they are used to power
user-facing Web applications. On the other hand PDBMSs traditionally
prefer consistency, as they are the evolution of traditional databases.

The choice is then between Basically Available, Soft state, Eventually
consistent (BASE) [55] and Atomicity, Consistency, Isolation, Durability
(ACID), two complementary design philosophies. With BASE the applica-
tion requirements need to be deeply understood in order to address consis-
tency issues that are not automatically solved by the system. The payback
is increased scalability [45]. With ACID we need not worry about state or
consistency issues, but the performance is constrained by total serializability.

Cloud computing and most PDBMS also target different markets. Cloud
technology is used mainly for OLAP tasks, PDBMS for OLTP, but there
are also niche databases targeted towards OLAP workloads.

PDBMSs employ the traditional relational model for data. Cloud sys-
tems are more flexible in this sense, providing more sophisticated data mod-
els (i.e. nested). The method to express queries is also quite different:
parallel databases use SQL and select-project-join queries, cloud systems
are more focused on UDFs and custom transformations. This is a result of
their respective goals, which are slightly different: parallel databases manage
large scale data, cloud systems analyze large scale data.

Also the interaction with the system differs. A cloud system usually does
not require to define a data schema upfront. The user can avoid the burden
of loading the data into rigid tables and start right away with his analysis.
If the result is good the analysis can be repeated and improved with time.
This approach is more agile and responds better to changes compared to the
traditional database approach.

Not everyone agrees on the merits of these new cloud systems [22]. There
is an ongoing fierce debate on which approach is the best [53]. Most of

2.2 Comparison with PDBMS 20

Parallel Databases Cloud Computing

multipurpose (analysis and data
update, batch and interactive)

high data integrity via ACID
transactions

many compatible tools (loading,
management, reporting, mining,
data visualization)

standard declarative high-level
query language: SQL

automatic query optimization

designed for scaling on large
commodity clusters

very high availability and fault
tolerance

flexible data model, no need to
convert data to a normalized
schema at load time

full integration with familiar
programming languages

full control over performance

Table 2.2: Relative advantages of PDBMS and Cloud Computing

the critiques are towards the inefficiency of the brute force approach when
compared to database technology [64]. More generally, cloud computing
ignores years of database research and results [21, 23].

Advocates of the cloud approach answer that not every problem involving
data has to be solved with a DBMS [18]. Moreover, both SQL and the
relational model are not always the best answer. Actually, this belief is held
also inside the database community [62].

For these reasons many non relational databases are flourishing on the
Web. The so called “NoSQL” movement synthesizes this trend. Sacrifice the
ability to perform joins and ACID properties for the sake of performance and
scalability, by going back to a simpler key-value design. Common practices
in everyday database use also justify this trend. The application logic is often
too complex to be expressed in relational terms (the impedance mismatch
problem). Programmers thus commonly use “binary blobs” stored inside
tables and access them by primary key only.

Declarative languages like SQL are as good as the optimizer beneath.
Many times the programmer has to give “hints” to the optimizer in order
to achieve the best query plan. This problem gets more evident as the

2.3 Case Studies 21

size of the data grows [37]. In these cases, giving the control back to the
programmer is usually the best option.

Table 2.2 summarizes the relative advantages of each system. Each en-
try in the table can be seen as an advantage that the system has over its
competitor, and thus a flaw in the latter.

On a final note, advocates for a hybrid system see value in both ap-
proaches and call for a new DBMS designed specifically for cloud systems [1].

2.3 Case Studies

Data analysis researchers have seen in cloud computing the perfect tool to
run their computations on huge data sets. In the literature, there are many
examples of successful applications of the cloud paradigm in different areas
of data analysis. In this section, we review a subset of the most significant
case studies.

Information retrieval has been the classical area of application for cloud
technologies. Indexing is a representative application of this field, as the
original purpose of MR was to build Google’s index for web search. In order
to take advantage of increased hardware and input sizes, novel adaptations
of single-pass indexing have also been proposed [46].

Pairwise document similarity is a common tool for a variety of problems
such as clustering and cross-document coreference resolution. When the cor-
pus is large, MR is convenient because it allows to efficiently decompose the
computation. The inner products involved in computing similarity are split
into separate multiplication and summation stages, which are well matched
to disk access patterns across several machines [24].

Frequent itemset mining is commonly used for query recomendation.
When the data set size is huge, both the memory use and the computational
cost can be prohibitively expensive. Parallel algorithms designed so that
each machine executes an independent group of mining tasks are the ideal
fit for cloud systems [43].

Search logs contain rich and up-to-date information about users’ prefer-
ences. Many data-driven applications highly rely on online mining of search
logs. A cloud based OLAP system for search logs has been devised in order
to support a variety of data-driven applications [72].

Machine learning has been a fertile ground for cloud computing applica-

2.4 Research Directions 22

tions. For instance, MR has been employed for the prediction of user rating
of movies, based on accumulated rating data [11]. In general, many widely
used machine learning algorithms can be expressed in terms of MR [12].

Graph analysis is a common and useful task. Graphs are ubiquitous and
can be used to represent a number of real world structures, e.g. networks,
roads and relationships. The size of the graphs of interest has been rapidly
increasing in recent years. Estimating the graph diameter for graphs with
billions of nodes (e.g. the Web) is a challenging task, which can benefit from
cloud computing [38].

Similarly, frequently computed metrics such as the clustering coefficient
and the transitivity ratio involve the execution of a triangle counting algo-
rithm on the graph. Approximated triangle counting algorithms that run
on cloud systems can achieve impressive speedups [66].

Co-clustering is a data mining technique which allows simultaneous clus-
tering of the rows and columns of a matrix. Co-clustering searches for sub-
matrices of rows and columns that are interrelated. Even though powerful,
co-clustering is not practical to apply on large matrices with several millions
of rows and columns. A distributed co-clustering solution that uses Hadoop
has been proposed to address this issue [52].

A number of different graph mining tasks can be unified via a generaliza-
tion of matrix-vector multiplication. These tasks can benefit from a single
highly optimized implementation of the multiplication. Starting from this
observation, a library built on top of Hadoop has been proposed as a way
to perform easily and efficiently large scale graph mining operations [39].

Cloud technologies have also been applied to other fields, such as sci-
entific simulations of earthquakes [11], collaborative web filtering [49] and
bioinformatics [57].

2.4 Research Directions

The systems described in the previous sections are fully functional and com-
monly used in production environment. Nonetheless, many research efforts
have been made in order to improve and evolve them. Most of the efforts
have focused on MapReduce, also because of the availability and success of
Hadoop. The research in this area can be divided in three categories: com-

putational models, programming paradigm enrichments and online analytics.

2.4 Research Directions 23

2.4.1 Computational Models

Various models for MapReduce have been proposed. Afrati and Ullman [3]
describe a general I/O cost model that captures the essential features of
MapReduce systems. The key assumptions of the model are:

• Files are replicated recordsets stored on a GFS-like file system with a
very large block size b and can be red/written in parallel by processes;

• Processes are the conventional unit of computation but have limits on
I/O: a lower limit of b (the block size) and an upper limit of s, a
quantity that can represent the available main memory of processors;

• Processors, with a CPU, main memory and secondary storage, are
available in infinite supply.

The authors present various algorithms for multiway join and sorting, and
analyze the communication and processing costs for these examples. Dif-
ferently from standard MR, an algorithm in this model is a Direct Acyclic
Graph of processes, in a way similar to Dryad or Cascading. Additionally,
the model assumes that keys are not delivered in sorted order to the Re-
duce. Because of these departures from the actual MR paradigm, the model
is not appropriate to compare real-world algorithms on Hadoop. However,
an implementation of the augmented model would be a good starting point
for future research. At the same time, it would be interesting to examine
the best algorithms for various common tasks on this model.

Karloff et al. [40] propose a novel theoretical model of computation for
MapReduce. The authors formally define the Map and Reduce functions
and the steps of a MR algorithm. Then they define a new algorithmic class:
MRCi. An algorithm in this class is a finite sequence of Map and Reduce
rounds with the following limitations, given an input of size n:

• each Map or Reduce is implemented by a RAM that uses sub-linear
space and polynomial time w.r.t. n;

• the total space used by the output of each Map is less than quadratic
in n;

• the number of rounds is O(logi n)

2.4 Research Directions 24

The model makes a number of assumptions on the underlying infrastructure
to justify the definition. The number of available processors is sub-linear.
This restriction guarantees that algorithms in MRC are practical. Each
processor has a sub-linear amount of memory. Given that the Reduce phase
can not begin until all the Maps are done, the intermediate results must be
stored temporarily in memory. This explains the space limit on the Map
output which is given by the total memory available across all the machines.
The authors give examples of algorithms for graph and string problems. The
result of their analysis is an algorithmic design technique for MRC.

Lammel [41] developes an interesting functional model of MapReduce
based on Haskell. The author reverse-engineered the original papers on
MapReduce and Sawzall to derive an executable specification. Their analysis
shows various interesting points. First, they show what are the relationships
between Google’s MR and the functional operators of map and reduce. The
user defined mapper is the argument of a map combinator. The reducer is
as well the argument of a map combinator over the intermediate data. The
reducer is typically also an application of a reduce combinator, but it can
perform also other operations like sorting.

Second, the authors disambiguate the type definition of MR which is
very vague in the original paper. They decompose MR in three phases
highlighting the shuffling and grouping operation that is usually performed
silently by the system. The signatures are as follows:

map : Map(k1 : v1) → [(k2, v2)]

groupBy : [(k2, v2)] →Map(k2 : [v2])

reduce : Map(k2 : [v2]) →Map(k2 : v3)

The Map(key : value) data type is commonly called associative array in
PHP or dictionary in Python, basically a set of keys with associated values.
The square brackets [] and parenthesis () indicate respectively a list and
a tuple. These definition are more rigorous in the way they use the terms
“list” and “set”.

Third they analyze the combiner function of MR and find that it is
actually useless. If it defines a function that is logically different from the
reducer there is no guarantee of correctness. Otherwise there is no need to

2.4 Research Directions 25

define two separate functions for the same functionality. However we argue
that there might be practical reasons to separate them, like performing
output or sorting only in the last phase.

Finally they analyze Sawzall’s aggregators. They find that the aggre-
gators identify the ingredients of a reduce (in the functional sense). They
contend that the essence of a Sawzall program is to define a list homomor-
phism: a function to be mapped over the list elements as well as a “monoid”

to be used for reduction. A monoid is a simple algebraic structure composed
of a set, an associative operation and its unit. They conclude that the dis-
tribution model of Sawzall is both simpler and more general thanks to the
use of monoids, and that it cannot be based directly on MR because of its
multi-level aggregation strategy (machine-rack-global).

2.4.2 Programming Paradigm Enrichments

A number of extensions to the base MR system have been developed. These
works differentiate from the models above because their result is a working
system. Most of these works focus on extending MR towards the database
area.

Yang et al. [70] propose an extension to MR in order to simplify the
implementation of relational operators. Namely, the implementation of join,
complex, multi-table select and set operations. The normal MR workflow is
extended with a third final Merge phase. This function takes in input two
different key-value pair lists and outputs a third key-value pair list. The
model assumes that the Reduce produces key-value pairs that are then fed
to the Merge. The signature of the functions are as follows:

map : (k1, v1)α → [(k2, v2)]α

reduce : (k2, [v2])α → (k2, [v3])α

merge : ((k2, [v3])α , (k3, [v4])β) → [(k4, v5)]γ

where α, β, γ represent data lineages, k is a key and v is a value. The
lineage is used to distinguish the source of the data, a necessary feature for
joins. The implementation of the Merge phase is quite complex, so we will
present only some key features. A Merge is a UDF like Map and Reduce. To

2.4 Research Directions 26

determine the data sources for the Merge, the user needs to define a partition

selector module. After being selected, the two input lists are accessed via two
logical iterators. The user has to describe the iteration pattern implementing
a move function that is called after every merge. Other optional functions
may also be defined for preprocessing purposes. Finally, the authors describe
how to implement common join algorithms on their framework and provide
some insight on the communication costs.

The framework described in the paper, even though efficient, is quite
complex for the user. To implement a single join algorithm the program-
mer needs to write up to five different functions for the Merge phase only.
Moreover, the system exposes many internal details that pollute the clean
functional interface of MR. To be truly usable, the framework should pro-
vide a wrapper library with common algorithms already implemented. Even
better, this framework could be integrated into high level interfaces like Pig
or Hive for a seamless and efficient experience.

Another attempt to integrate database feature into MR is proposed by
Abouzeid et al. [2]. Their HadoopDB is an architectural hybrid between
Hadoop and a DBMS (PostgreSQL). The goal is to achieve the flexibility
and fault tolerance of Hadoop and the performance and query interface of a
DBMS. The architecture of HadoopDB comprises single instances of Post-
greSQL as the data storage (instead of HDFS), Hadoop as the communica-
tion layer, a separate catalog for metadata and a query rewriter (SMS Plan-
ner) that is a modified version of Hive. The SMS Planner converts HiveQL
queries into MR jobs that read data from the PostgreSQL instances. The
core idea is to leverage the I/O efficiency given by indexes in the database
to reduce the amount of data that needs to be read from disk.

The system is then tested with the same benchmarks used by Pavlo
et al. [53]. The results show a performance improvement over Hadoop in
most tasks. Furthermore HadoopDB is relatively more fault tolerant than a
common PDBMS, in the sense that crashes do not trigger expensive query
restarts. HadoopDB is an interesting attempt to join distributed systems
and databases. Nonetheless, we argue that reusing principles of database
research rather than its artifacts should be the preferred method.

2.4 Research Directions 27

2.4.3 Online Analytics

A different research direction aims to enable online analytics on large scale
data. This gives substantial competitive advantages in adapting to changes,
and the ability to process stream data. Systems like MR are essentially batch
systems, while BigTable provides low latency but is just a lookup table. To
date there is no system that provides low latency general querying.

Olston et al. [50] describe an approach to interactive analysis of web-
scale data. The scenario entails interactive processing of a single negotiated
query over static data. Their idea is to split the analysis phase in two: an
offline and an online phase. In the former, the user submits a template to
the system. This template is basically a parameterized query plan. The
system examines the template, optimizes it and computes all the necessary
auxiliary data structures to speed up query evaluation. In the process it
may negotiate restrictions on the template. In the online phase the user
instantiates the template by binding the parameters into the template. The
system computes the final answer using the auxiliary structures in “real-
time”.

The offline phase works in a batch environment with large computing
resources (i.e. a MR-style system). The online phase may alternatively be
run on a single workstation, if enough data reduction happens in the offline
phase. The authors focus on parameterized filters as examples and show
how to optimize the query plan for the 2-phase split. They try to push
all the parameter-free operations in the offline phase, and create indexes
or materialized views at phase junctures. Various types of indexing ap-
proaches are then evaluated, together with other background optimization
techniques. This work looks promising and there are still questions to be
answered like what kind of templates are amenable to interactivity, how to
help the user building the query template and how to introduce approximate
query processing techniques (e.g. online aggregation [34]).

On this last issue we find a work by Condie et al. [15]. They modify
Hadoop in order to pipeline data between operators, support online aggre-
gation and continuous queries. They name their system Hadoop Online
Prototype (HOP). In HOP a downstream dataflow element can begin con-
suming data before a producer element has finished execution. Hence they
can generate and refine an approximate answer using online aggregation [34].
Pipelining also enables to push data as it comes inside a running job, which

2.4 Research Directions 28

in turn enables stream processing and continuous queries.
To implement pipelining the simple pull interface between Reduce and

Map has to be modified into a hybrid push/pull interface. The mappers
push data to reducers in order to speed up the shuffle and sort phase. The
pushed data is treated ad tentative to retain fault tolerance: if one of the
entities involved in the transfer fails the data is simply discarded. For this
reason mappers also write the data to disk as in normal MR, and the pull
interface is retained.

Online aggregation is supported by simply applying the reduce function
to all the pipelined data received so far. This aggregation can be triggered
on specific events (e.g. 50% of the mappers completed). The result is a
snapshot of the computation and can be accessed via HDFS. Continuous
MR jobs can be run using both pipelining and aggregation on stream data.
The reduce function is invoked at intervals defined by time or number of
inputs. To retain fault tolerance the system retains a rolling suffix of the
history of Map output.

HOP can also pipeline and do online aggregation between jobs, but this
is defined “problematic” by the authors. For pipelining, they say that “the
computation of the reduce function from the previous job and the map func-
tion of the next job cannot be overlapped”. This is actually not true because
the Map function does not need the full input before starting, but operates
record-wise. For online aggregation the problem is that the output of Reduce
on 50% of the input is not directly related to the final output. This means
that every snapshot must be recomputed from scratch, using considerable
computing resources. This problem can be alleviated for Reduce functions
that are declared to be distributive, associative or algebraic aggregate. This
line of research is extremely promising and some of the shortcomings of this
work are directly addressable. For example we can enable overlapping the
computation for a Reduce-to-Map pipelining. Moreover, we could use se-

mantic clues to specify properties about the functions or the input. This
could easily be implemented using Java annotations.

Chapter 3

Research Plan

In the previous Chapters we have shown the relevance of data intensive cloud
computing and we have highlighted some of the currently pursued research
directions. This research field is new and rapidly evolving. As a result, the
initial efforts are not organic.

This thesis aims to fill this gap by providing a coherent research agenda in
this field. We will address the emerging issues in employing cloud computing
for large scale data analysis. We will build our research upon a large base
of literature in data analysis, database and parallel systems research. As a
result we expect to significantly improve the state of the art in the field, and
possibly evolve the current computational paradigm.

3.1 Research Problem

Cloud computing is an emerging technology in the data analysis field, used
to capitalize on very large data sets. “There is no data like more data”
is a famous motto that epitomizes the opportunity to extract significant
information by exploiting huge volumes of data.

Information represents a competitive advantage for companies operating
in the information society, an advantage that is all the greater the sooner
it is achieved. In the limit, online or real-time analytics will become an
invaluable support for decision making.

To date, cloud computing technologies have been successfully employed
for batch processing. Adapting these systems to online analytics is a chal-
lenging problem, mainly because of the fundamental design choices that
favor throughput over latency [47].

29

3.1 Research Problem 30

Another driver for change is the shift towards higher level languages.
These languages often incorporate traditional relational operators or build
upon SQL. This means that efficient implementation of relational operators
is a key problem. Nevertheless, operators like join are currently an “Achille’s
heel” of cloud systems [53].

However, we argue that this limit in the current unstructured and brute-
force approach is not fundamental. This approach is just the easiest to
start with, but not necessarily the best one. As research progresses more
sophisticated approaches will be available. High level languages will hide
their complexity and allow their seamless integration.

Many data analysis algorithms spanning different application areas have
been proposed for cloud systems. So far, speedup and scalability results
have been encouraging.

Still, it is not clear in the research community which problems are a good
match for cloud systems. More importantly, the ingredients and recipes for
building a successful algorithm are still hidden. A library of “algorithmic
design patterns” would enable faster and easier adoption of cloud systems.

Even though there have been attempts to address these issues, current
research efforts in this area have been mostly “one shot”. The results are
promising but their scope and generality is often limited to the specific
problem at hand. These efforts also lack a coherent vision and a systematic
approach. For this reason they are also difficult to compare and integrate
with each other.

This “high entropy” level is typical of new research areas whose agenda
is not yet clear. One of the main shortcomings is that the available models
for cloud systems are at an embryonal stage of development. This hampers
the comparison of algorithms and the evaluation of their properties from a
theoretical point of view.

Furthermore, up to now industry has been leading the research in cloud
computing. Academia has now to follow and “catch-up”. Nonetheless this
fact also has positive implications. The research results are easily adapted
to industrial environments because the gap between production and research
systems is small.

The problems described up to this point are a result of the early stage
of development in which this area of research currently is. For this reason
we claim that further effort is needed to investigate this area.

3.2 Thesis Proposal 31

3.2 Thesis Proposal

The goal of this thesis will be to provide a coherent framework for research
in the field of large scale data analysis on cloud computing systems. More
specifically we aim to provide a framework that tries to answer these ques-
tions:

• Which are the best algorithms for large scale data analysis?

• How to support these algorithms on cloud computing systems?

• Is it possible to carry out online data analysis on such systems?

We will approach these problems according to the following methodology.
We will study the most common data analysis algorithms. A wide spec-

trum of analytical algorithms are being applied to large amounts of data.
These algorithms range from typical text processing tasks, such as index-
ing, to pattern extraction, machine learning and graph mining. Such algo-
rithms encompass different computational patterns, which might not prop-
erly match the popular paradigms available today. Therefore, the first step
will be to define an analytical workload that is representative of their new
unsatisfied requirements.

This analysis will allow us to identify the weaknesses of existing systems,
and to design a roadmap of contributions to the state of the art. To this end,
we propose to selectively and coherently integrate into cloud systems prin-
ciples from database research, as opposed to its artifacts. For this reason we
will develop a comprehensive approach to integration. We will pick relevant
principles from the database literature, which we can apply to satisfy the
requirements. We will re-elaborate these principles in new forms and adapt
them to the new context. If unable to find suitable results in the literature,
we will formulate novel original approaches.

We plan to evaluate the quality of our proposed contributions both from
an experimental and theoretical point of view. We will propose computa-
tional models for cloud computing that take into account the features of the
system and its possible extensions. We will use these models to analyze our
proposed solutions, and also to provide a common reference ground for the
comparison of other solutions, algorithms and paradigms.

In addressing interactive and online analytics, we will evaluate different
approaches to query answering, like sampling and approximate answers. In

3.2 Thesis Proposal 32

this respect, providing confidence intervals for approximate answers is an
important feature, missing from current systems, that we plan to explore.
We will also try to address the issue of skewed distribution of data, which
often leads to straggler tasks that slow down the entire job. Furthermore,
we will try to leverage properties of the input or of the computation in order
to perform optimizations and reduce the job turnaround time.

We will generally use MapReduce as the target paradigm, because of
its widespread adoption by the scientific community and of the open-source
availability of its implementations (e.g. Hadoop). Nevertheless, we will
strive to propose principles and approaches that are as general as possible.
We hope that other cloud systems and the next generation of massively
parallel systems will also be able to benefit from our work.

We expect to produce extensions to MapReduce and to the MapReduce
paradigm in order to support online analytics and other common computa-
tion patterns. This will conceivably lead to a new paradigm, an evolution
beyond the original MapReduce. In our activity we will give attention to
the integration with high level languages, as this shields the user from the
evolution of the underlying infrastructure.

As a byproduct of our research, we will develop a toolbox of algorithms
for large scale data analysis. This toolbox will exploit our proposed exten-
sions of the MapReduce paradigm, thus validating the value and soundness
of our research efforts.

To conclude, the expected contributions of this thesis are:

• To build and evaluate a toolbox of algorithms for large scale data
analysis on cloud computing systems

• To design extensions to existing programming paradigms in order to
support these algorithms

• To develop methods to speed up these algorithms in order to support
online processing

Our research is an effort to bring together the distributed systems and
database communities. Cross-contamination of research areas is a great
stimulus for scientific advancement. Our research is a step toward the cre-
ation of a common ground on which these communities will be able to com-
municate and thrive together.

Bibliography

[1] D. J. Abadi, “Data Management in the Cloud: Limitations and Op-
portunities,” IEEE Data Engineering Bulletin, vol. 32, no. 1, pp. 3–12,
March 2009.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads,” in Proceedings of the
VLDB Endowment, vol. 2, no. 1, August 2009, pp. 922–933.

[3] F. Afrati and J. Ullman, “A New Computation Model for Rack-Based
Computing,” 2009, submitted to PODS 2010: Symposium on Principles
of Database Systems.

[4] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in AFIPS ’67 (Spring): Proceedings
of the April 18-20, 1967, spring joint computer conference. ACM, April
1967, pp. 483–485.

[5] C. Anderson, “The Petabyte Age: Because more isn’t just more—more
is different,” Wired, vol. 16, no. 07, July 2008.

[6] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley. (2005)
Hadoop: A framework for running applications on large clusters built
of commodity hardware. [Online]. Available: http://hadoop.apache.org

[7] G. E. P. Box and N. R. Draper, Empirical model-building and response
surface. John Wiley & Sons, Inc., 1986, p. 424.

[8] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in OSDI ’06: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, November 2006, pp. 335–350.

33

BIBLIOGRAPHY

[9] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “SCOPE: Easy and efficient parallel processing of mas-
sive data sets,” in Proceedings of the VLDB Endowment, vol. 1, no. 2.
VLDB Endowment, August 2008, pp. 1265–1276.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “BigTable: A distributed
storage system for structured data,” in OSDI ’06: Proceedings of the 7th
Symposium on Operating systems Design and Implementation, Novem-
ber 2006, pp. 205–218.

[11] S. Chen and S. Schlosser, “Map-Reduce Meets Wider Varieties of
Applications,” Intel Research, Pittsburgh, Tech. Rep. IRP-TR-08-05,
May 2008. [Online]. Available: http://www.pittsburgh.intel-research.
net/∼chensm/papers/IRP-TR-08-05.pdf

[12] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-Reduce for Machine Learning on Multicore,” in
Advances in Neural Information Processing Systems. MIT Press, 2007,
vol. 19, pp. 281–288.

[13] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[14] Concurrent. (2008, January) Cascading: An API for executing
workflows on Hadoop. [Online]. Available: http://www.cascading.org

[15] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmele-
egy, and R. Sears, “MapReduce Online,” University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-136, October 2009. [On-
line]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-136.html

[16] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS: Ya-
hoo!’s hosted data serving platform,” in Proceedings of the VLDB En-
dowment, vol. 1, no. 2. VLDB Endowment, August 2008, pp. 1277–
1288.

[17] M. Creeger, “Cloud Computing: An Overview,” Queue, vol. 7, no. 5,
pp. 3–4, June 2009.

34

BIBLIOGRAPHY

[18] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, January
2010.

[19] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” in OSDI ’04: Proceedings of the 6th Symposium on
Opearting Systems Design and Implementation. USENIX Association,
December 2004, pp. 137–150.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP ’07: Proceedings of
21st ACM SIGOPS symposium on Operating systems principles. ACM,
October 2007, pp. 205–220.

[21] D. DeWitt and J. Gray, “Parallel database systems: the future of high
performance database systems,” Communications of the ACM, vol. 35,
no. 6, pp. 85–98, June 1992.

[22] D. DeWitt and M. Stonebraker. (2008, January) MapReduce: A major
step backwards. [Online]. Available: http://databasecolumn.vertica.
com/database-innovation/mapreduce-a-major-step-backwards http:
//databasecolumn.vertica.com/database-innovation/mapreduce-ii

[23] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen, “The Gamma database machine project,” IEEE
Transactions on Knowledge and Data Engineering, vol. 2, no. 1, pp.
44–62, March 1990.

[24] T. Elsayed, J. Lin, and D. W. Oard, “Pairwise document similarity
in large collections with MapReduce,” in HLT ’08: Proceedings of the
46th Annual Meeting of the Association for Computational Linguistics
on Human Language Technologies. ACL, June 2008, pp. 265–268.

[25] Facebook. (2008, August) Cassandra: A highly scalable, eventually
consistent, distributed, structured key-value store. [Online]. Available:
http://incubator.apache.org/cassandra

[26] A. Fox and E. A. Brewer, “Harvest, Yield, and Scalable Tolerant Sys-
tems,” in HOTOS ’99: Proceedings of the the 7th Workshop on Hot

35

BIBLIOGRAPHY

Topics in Operating Systems. IEEE Computer Society, March 1999,
pp. 174–178.

[27] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in SOSP ’03: Proceedings of the 19th ACM symposium on Operating
systems principles. ACM, October 2003, pp. 29–43.

[28] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, June 2002.

[29] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and
L. Brilliant, “Detecting influenza epidemics using search engine query
data,” Nature, vol. 457, no. 7232, pp. 1012–1014, 2008.

[30] Google Blog. (2008, November) Sorting 1PB with MapRe-
duce. [Online]. Available: http://googleblog.blogspot.com/2008/11/
sorting-1pb-with-mapreduce.html

[31] J. Gray and D. Patterson, “A Conversation with Jim Gray,” Queue,
vol. 1, no. 4, pp. 8–17, July 2003.

[32] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the
ACM, vol. 31, no. 5, pp. 532–533, May 1988.

[33] J. M. Hellerstein, “Programming a Parallel Future,” University of
California, Berkeley, Tech. Rep. UCB/EECS-2008-144, November 2008.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2008/EECS-2008-144.html

[34] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
in SIGMOD ’97: Proceedings of the 23rd ACM SIGMOD international
conference on Management of data. ACM, May 1997, pp. 171–182.

[35] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,”
IEEE Computer, vol. 41, no. 7, pp. 33–38, July 2008.

[36] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in
EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems. ACM, March 2007, pp. 59–72.

36

BIBLIOGRAPHY

[37] A. Jacobs, “The pathologies of Big Data,” Communications of the
ACM, vol. 52, no. 8, pp. 36–44, August 2009.

[38] U. Kang, C. Tsourakakis, A. Appel, C. Faloutsos, and
J. Leskovec, “HADI: Fast diameter estimation and mining in
massive graphs with Hadoop,” Carnegie Mellon University, Pitts-
burgh, Tech. Rep. CMU-ML-08-117, December 2008. [Online].
Available: http://reports-archive.adm.cs.cmu.edu/anon/anon/home/
ftp/ml2008/CMU-ML-08-117.pdf

[39] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-
Scale Graph Mining System Implementation and Observations,” in
ICDM ’09: Proceedings of the 9th IEEE International Conference on
Data Mining. IEEE Computer Society, December 2009, pp. 229–238.

[40] H. Karloff, S. Suri, and S. Vassilvitskii, “A Model of Computation
for MapReduce,” in SODA ’10: Symposium on Discrete Algorithms.
ACM, January 2010.

[41] R. Lammel, “Google’s MapReduce programming model – Revisited,”
Science of Computer Programming, vol. 70, no. 1, pp. 1–30, January
2008.

[42] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[43] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “PFP: Parallel
FP-Growth for Query Recommendation,” in RecSys ’08: Proceedings
of the 2nd ACM conference on Recommender Systems. ACM, October
2008, pp. 107–114.

[44] LinkedIn. (2009, June) Project Voldemort: A distributed database.
[Online]. Available: http://project-voldemort.com/

[45] F. Marinescu and C. Humble. (2008, March) Trading Consistency
for Scalability in Distributed Architectures. [Online]. Available:
http://www.infoq.com/news/2008/03/ebaybase

[46] R. M. C. McCreadie, C. Macdonald, and I. Ounis, “On single-pass
indexing with MapReduce,” in SIGIR ’09: Proceedings of the 32nd

37

BIBLIOGRAPHY

international ACM SIGIR conference on Research and development in
Information Retrieval. ACM, July 2009, pp. 742–743.

[47] M. K. McKusick and S. Quinlan, “GFS: Evolution on Fast-forward,”
Queue, vol. 7, no. 7, pp. 10–20, August 2009.

[48] P. Mell and T. Grance. (2009, October) Definition of Cloud Computing.
National Institute of Standards and Technology (NIST). [Online].
Available: http://csrc.nist.gov/groups/SNS/cloud-computing

[49] M. G. Noll and C. Meinel, “Building a Scalable Collaborative Web
Filter with Free and Open Source Software,” in SITIS ’08: Proceedings
of the 4th IEEE International Conference on Signal Image Technology
and Internet Based Systems. IEEE Computer Society, November 2008,
pp. 563–571.

[50] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed,
“Interactive Analysis of Web-Scale Data,” in CIDR ’09: Proceedings
of the 4th Conference on Innovative Data Systems Research, January
2009.

[51] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A not-so-foreign language for data processing,” in SIGMOD
’08: Proceedings of the 34th ACM SIGMOD international conference
on Management of data. ACM, June 2008, pp. 1099–1110.

[52] S. Papadimitriou and J. Sun, “DisCo: Distributed Co-clustering with
Map-Reduce: A Case Study towards Petabyte-Scale End-to-End Min-
ing,” in ICDM ’08: Proceedings of the 8th IEEE International Confer-
ence on Data Mining. IEEE Computer Society, December 2008, pp.
512–521.

[53] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Mad-
den, and M. Stonebraker, “A Comparison of Approaches to Large-Scale
Data Analysis,” SIGMOD ’09: Proceedings of the 35th SIGMOD inter-
national conference on Management of data, pp. 165–178, June 2009.

[54] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Scientific Programming, vol. 13,
no. 4, pp. 277–298, October 2005.

38

BIBLIOGRAPHY

[55] D. Pritchett, “BASE: An ACID Alternative,” Queue, vol. 6, no. 3, pp.
48–55, May 2008.

[56] J. Rowley, “The wisdom hierarchy: representations of the DIKW hi-
erarchy,” Journal of Information Science, vol. 33, no. 2, pp. 163–180,
April 2007.

[57] M. Schatz, “CloudBurst: highly sensitive read mapping with MapRe-
duce,” Bioinformatics, vol. 25, no. 11, p. 1363, June 2009.

[58] Y. Shi, “Reevaluating Amdahl’s Law and Gustafson’s Law,”
October 1996, Computer Sciences Department, Temple University.
[Online]. Available: http://www.cis.temple.edu/∼shi/docs/amdahl/
amdahl.html

[59] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer, 2008,
p. 31.

[60] M. Stonebraker and U. Cetintemel, “One Size Fits All: An Idea Whose
Time Has Come and Gone,” in ICDE ’05: Proceedings of the 21st In-
ternational Conference on Data Engineering. IEEE Computer Society,
April 2005, pp. 2–11.

[61] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge,
N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. Zdonik, “One
size fits all? Part 2: Benchmarking results,” in CIDR ’07: Proceedings
of the 3rd Conference on Innovative Data Systems Research, January
2007.

[62] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The End of an Architectural Era (It’s Time for a
Complete Rewrite),” in VLDB ’07: Proceedings of the 33rd interna-
tional conference on Very Large Data Bases. ACM, September 2007,
pp. 1150–1160.

[63] M. Stonebraker, “The Case for Shared Nothing,” IEEE Database En-
gineering Bulletin, vol. 9, no. 1, pp. 4–9, March 1986.

[64] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “MapReduce and Parallel DBMSs: Friends

39

BIBLIOGRAPHY

or Foes?” Communications of the ACM, vol. 53, no. 1, pp. 64–71,
January 2010.

[65] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A warehousing solution over
a map-reduce framework,” in Proceedings of the VLDB Endowment,
vol. 2, no. 2. VLDB Endowment, August 2009, pp. 1626–1629.

[66] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos,
“DOULION: Counting Triangles in Massive Graphs with a Coin,” in
KDD ’09: Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge Discovery and Data mining. ACM, April 2009,
pp. 837–846.

[67] J. Vitter and E. Shriver, “Algorithms for parallel memory, I: Two-level
memories,” Algorithmica, vol. 12, no. 2, pp. 110–147, September 1994.

[68] W. Vogels, “Eventually Consistent,” Queue, vol. 6, no. 6, pp. 14–19,
December 2008.

[69] Wikipedia. (2010, January) Database Management System. [On-
line]. Available: http://en.wikipedia.org/wiki/Database management
system

[70] H. Yang, A. Dasdan, R. Hsiao, and D. Parker, “Map-reduce-merge:
simplified relational data processing on large clusters,” in SIGMOD
’07: Proceedings of the 33rd ACM SIGMOD international conference
on Management of data. ACM, June 2007, pp. 1029–1040.

[71] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and
J. Currey, “DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language,” in OSDI ’08: Proceed-
ings of the 8th Symposium on Operating System Design and Implemen-
tation, December 2008.

[72] B. Zhou, D. Jiang, J. Pei, and H. Li, “OLAP on search logs: an in-
frastructure supporting data-driven applications in search engines,” in
KDD ’09: Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge Discovery and Data mining. ACM, June 2009, pp.
1395–1404.

40

