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Abstract

Social and information networks may become polarized, leading to

echo chambers and political gridlock. Accurately measuring this

phenomenon is a critical challenge. Existing measures often con-

flate genuine structural division with random topological features,

yielding misleadingly high polarization scores on random networks,

and failing to distinguish real-world networks from randomized

null models. We introduce DSP, a Diffusion-based Structural Polar-

ization measure designed from first principles to correct for such

biases. DSP removes the arbitrary concept of “influencers” used by

the popular Random Walk Controversy (RWC) score, instead treat-

ing every node as a potential origin for a random walk. To validate

our approach, we introduce a set of desirable properties for polariza-

tion measures, expressed through reference topologies with known

structural properties. We show that DSP satisfies these desiderata,

being near-zero for non-polarized structures such as cliques and ran-

dom networks, while correctly capturing the expected polarization

of reference topologies such as monochromatic-splittable networks.

Our method applied to U.S. Congress datasets uncovers trends of

increasing polarization in recent years. By integrating a null model

into its core definition, DSP provides a reliable and interpretable

diagnostic tool, highlighting the necessity of statistically-grounded

metrics to analyze societal fragmentation.

CCS Concepts

• Human-centered computing→ Social network analysis; •

Theory of computation → Graph algorithms analysis; • Applied
computing → Sociology.
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1 Introduction

Quantifying the structural polarization of a network from its topol-

ogy is crucial for identifying systemic risks—from political grid-

lock [28] to the proliferation of misinformation [27]—and for devel-

oping effective interventions to mitigate these harmful effects [23].

This phenomenon is characterized by the grouping of individuals

into coherent communities that rarely interact with each other [7],

and it is increasingly observed across social, political, and informa-

tion networks, where its effects can be seen in the emergence of

ideological echo chambers [6] and adversarial dynamics [8]. Miti-

gating the detrimental effects of polarization on collective decision-

making and overall societal stability necessitate robust methods for

its quantification and analysis [4].

Existing measures of structural polarization, however, face sig-

nificant limitations. Many traditional methods, such as modularity

or assortativity, rely on simplistic null models that often fail to

capture the complex dynamics of the real-world networks [13, 19].

Other more recent measures, such as Betweenness Centrality Con-

troversy [12], Boundary Polarization [13], Dipole Polarization [24],

Krackhardt E/I Ratio [18], and Random Walk Controversy [12],

can produce high polarization scores even for random networks,

indicating an undesirable sensitivity to elementary network fea-

tures such as average degree and network size [32]. These biases

occur because existing controversy measures conflate topological

artifacts, such as low density, small network size, or uneven group

splits, with genuine structural division.

Attempts to correct these biases, such as post-hoc normalization

via randomization tests [32], remain fundamentally unprincipled,

as they apply arbitrary null models retroactively without rigor-

ous justification. As such, they risk over- or under-correction, as

different null assumptions (e.g., preserving degree sequences vs.

erasing all structure) yield conflicting baselines [29]. Moreover, nor-

malization is treated as an external adjustment rather than a core

component of the measure’s design, perpetuating ambiguities in

score interpretation.

To address the aforementioned issues, we introduce DSP, a new

measure for structural polarization, built on a principled statisti-

cal model. Unlike previous proposals, DSP is designed to have an

expected value of zero on 𝐺 (𝑛, 𝑝, ℓ) networks, a labeled extension

of the Erdős-Rényi 𝐺 (𝑛, 𝑝) model where edges and labels are as-

signed randomly, thus ensuring no structural correlation exists

between the two. Our design explicitly removes the biases found in

the original Random Walk Controversy (RWC) [12], by eliminating

the problematic role of predefined influencers. Instead, DSP treats

each vertex as a potential source for a random walk, with all other

vertices as targets. This approach retains the strength of RWC in be-

ing independent of partition sizes and in leveraging random walks
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Table 1: Most common structural polarization measures.

Measure Range Intuition

Random Walk Controversy (RWC) [12] [−1, 1] In polarized networks, users are less exposed to cross-cutting content.

Adaptive Random Walk Controversy (ARWC) [12] [−1, 1] RWC, adjusting for community size in the number of influencers.

Betweenness Centrality Controversy (BCC) [12] [0, 1] High betweenness centrality on boundary edges indicates separation.

Boundary Polarization (BP) [13] [−0.5, 0.5] In polarized networks, authoritative users are further from the boundary.

Cross-community Affinity (CCA) [25] [−1.5, 1.5] Direct and indirect links influence a node’s ideological openness and cross-community affinity.

Color Assortativity (Col-Ass) [26] [−1, 1] Higher tendency to connect with nodes with the same opinion indicates separation.

Dipole Moment (DM) [24] [0, 1] Greater distance between positive and negative opinions indicates separation.

Krackhardt E/I Ratio (EI) [18] [−1, 1] Higher fraction of within-community edges indicates separation.

Adaptive E/I Index (AEI) [5] [−1, 1] EI, accounting for different community sizes.

Modularity (Q) [33] [−0.5, 1] More within-community edges than expected by chance indicates separation.

to measure distance and information spread effectively. Nonethe-

less, by considering every vertex a potential source, DSP becomes

more robust to different network structures and better reflects how

information spreads across the network (see Section 4).

Eliminating the idea of designating a small number of vertices

as influencers and considering all vertices as potential influencers

poses new challenges, as a random walk (re)starting from a given

vertex 𝑣 has high probability of visiting vertex 𝑣 more frequently,

which introduces a new source of bias. We show how to avoid this

bias by designing a probing process tailored to our task. The result-

ing DSP measure can be interpreted as the average score of how

likely a vertex is to receive information from a given community,

where the average is taken over the distribution defined by our

probing process. As a result, DSP is statistically more principled

than RWC, which incorporates products of probabilities with no

clear statistical interpretation.

We validate our approach through extensive experiments on

both synthetic and real-world networks. First, we develop a set of

reference networks with prescribed values of structural polarization

and confirm that DSP behaves as expected. On 𝐺 (𝑛, 𝑝, ℓ) networks,
DSP exhibits near-zero scores as theoretically guaranteed. Second,

for real-world networks, DSP distinguishes ideologically polarized

communities from structurally similar but neutralized configura-

tions, further demonstrating its robustness to group size imbalances

and addressing limitations of both RWC and traditional metrics.

Furthermore, we analyze the relationship between assortativity and

polarization as captured by DSP. Finally, we show that DSP can be

approximated efficiently with good accuracy.

By integrating a statistically principled null model into its core

formulation, DSP advances polarization measurement beyond ad

hoc corrections. This approach answers a critical need for metrics

grounded in explicit, theoretically sound baselines, which is es-

sential for developing reliable diagnostics in an era of algorithmic

fragmentation and polarized discourse. Our findings bridge key

gaps in existing methodologies, enriching the toolkit for analyzing

structural polarization and highlighting the value of robust mea-

sures to guide effective interventions in complex social landscapes.

A full version with experimental details, complexity analysis,

and additional experiments is available on arXiv.

2 Background and Preliminaries

Structural polarization measures aim at quantifying whether a

given network represents a polarized system from its topology.

Because polarization is a system-level phenomenon, these features

are typically defined at the network level rather than the vertex

Table 2: Summary of notation.

Symbol Meaning

𝑉 Set of vertices in the network

𝐸 Set of edges in the network (𝐸 ⊆ 𝑉 × 𝑉 )
𝐴 Network adjacency matrix

𝑛 Number of vertices (𝑛 = |𝑉 |)
𝑅, 𝐵 Partitions of V (𝑅 ∪ 𝐵 = 𝑉 , 𝑅 ∩ 𝐵 = ∅)
c(𝑣) Partition of vertex 𝑣, referred to as its color (c(𝑣) ∈ {𝑅, 𝐵})
𝜙𝑍 Stationary distribution of a diffusion process rooted in

𝑍 ⊆ 𝑉 (e.g., Random Walk with Restart)

level (such as individual behavioral mechanisms). Similar measures

have been defined for economic systems, e.g., the Gini coefficient

and the Theil index, as well as in other domains (e.g., spatial, occu-

pational, and educational segregation); however, these measures

deal with numerical data rather than networks. Table 1 reports the

structural polarization measures most commonly used to analyse

social networks, together with an intuition of the measure’s aim.

Structural polarization pipeline. Structural polarization mea-

sures are designed to be used as part of a broader pipeline [9, 32].

The typical pipeline comprises the following three stages:

(𝑖) Define an appropriate directed network, e.g., a web graph, a

friendship network, or an endorsement network.

(𝑖𝑖) Partition this network into (typically two) separate communi-

ties, under the assumption that the network reflects polarized

opinions along a single ideological dimension;

(𝑖𝑖𝑖) Compute the structural polarization measure starting from

the communities from the previous step.

The focus of the current work is on the third and last step. While

this pipeline is commonly used, it is by no means the only way to

use structural polarization measures. For instance, communities

might already be defined in the data or derived from distant labels

(e.g., semantically polarized hashtags).

2.1 Problem Setting and Notation

This section introduces our notation (summarized in Table 2). We

consider a weakly-connected directed network𝐺 = (𝑉 , 𝐸), where
𝑛 = |𝑉 |. The set of vertices 𝑉 is partitioned into two subsets, 𝑅

and 𝐵, either algorithmically (e.g., by applying a graph-partitioning

algorithm) or by metadata (e.g., by using vertex features). We refer

to these sets as communities. We call vertex color the attribute of
a vertex 𝑣 ∈ 𝑉 that indicates membership to a given community,

denoted as c(𝑣) ∈ {𝑅, 𝐵}.𝐴 denotes the adjacency matrix of the net-

work𝐺 , i.e., 𝐴𝑖 𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐸 and 𝐴𝑖 𝑗 = 0 otherwise. If the edges

http://arxiv.org/abs/2512.03937
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of 𝐺 have weights, they can be incorporated in the corresponding

entries of the adjacency matrix 𝐴.

We assume a function 𝜙𝑣 : 𝑉 → R+
that assigns a non-negative

value to each vertex 𝑤 ∈ 𝑉 , parameterized by a vertex 𝑣 ∈ 𝑉 .

The function 𝜙𝑣 is arbitrary, provided it does not depend on the

colors of the vertices. Intuitively, it captures aspects of the network

structure, so that more important vertices 𝑤 tend to have higher

values. Specifically, it represents a network diffusion process [22]

and measures how information originating from 𝑣 spreads.

As a concrete example, we consider the stationary distribution

of the random walk with restart (RWR) from 𝑣 . Mathematically, 𝜙𝑣
is the solution to the equation

𝜙𝑣 = 𝛼𝐴𝜙𝑣 + (1 − 𝛼)1𝑣,

where 𝛼 ∈ [0, 1] is the follow-through probability (i.e., 1 − 𝛼 is

the restart probability), and 1𝑣 is the indicator function for the

set {𝑣}. For 𝛼 → 1, the RWR becomes a traditional random walk;

its stationary distribution is proportional to degree centrality. For

𝛼 → 0, the RWR remains trapped in the immediate neighborhood

of 𝑣 . Thus, this diffusion process can be understood as interpolating

between local closeness and global degree centrality.

2.2 The RWC Measure and its Limitations

RWC [9, 12] is a widely-used structural polarization measure that

informs the present work. At its core, RWC measures the relative

exposure of a user to influential members of their own community

versus those of an opposing community. The measure assumes

that influencers are high-in-degree vertices and that information

spreads via random walks.

Systematic bias. A key critique of RWC (as well as of other mea-

sures) is its systematic bias [32]. The measure reports positive

polarization scores on random Erdős-Rényi networks, where edges

are independent, thus no true structural division exists. Its scores on

real-world networks are often preserved even after randomization

with null models that preserve basic degree structure (for 𝑑 = 0 and

𝑑 = 1 using the dk-series terminology [21]). These results suggest

RWC is sensitive to elementary network features such as size, den-

sity, and community balance, rather than capturing only genuine

structural divisions. However, the proposed solution of standard-

izing the score by its values in a random graph null model [32]

raises several crucial issues. First, it is unclear whether vertex iden-

tities (and therefore their labels) should be fixed when computing

the measure in the samples from the null model, or if the label-

ing (i.e., the partitioning in the broader pipeline) is assumed to be

part of the measure. Second, the solution, while widely applicable

to all measures, is post-hoc. In addition, it requires considerable

computational resources. A more principled solution would be to

understand the causes of these biases to design a measure that is

unbiased by construction.

Drawbacks of RWC. One of the main drawbacks of RWC is that

it yields positive values on random network null models such as

Erdős-Rényi [32]. Receiving positive scores on random networks

puts the measure’s validity in doubt. The issue lies in how RWC

handles its predefined set of “influencer” vertices. The measure is

based on the probability of a random walk starting in one com-

munity (𝑅 or 𝐵), conditioned on it having reached an influencer
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Figure 1: Polarization scores in 1000 random networks from

𝐺 (𝑛, 𝑝, ℓ), each with 10 000 vertices, varying average degree

and partition sizes: 50% red–50% blue, 70% red–30% blue, and

90% red–10% blue. RWC (left) shows an unwarranted positive

bias, due to overlap between the restart set and the influ-

encers. Removing this overlap eliminates the bias, as shown

for the “no-influencers” variant of RWC (right).

in a given community (𝑅+ or 𝐵+). However, a bias is introduced
when the walk’s restart set overlaps with the target influencer set.

This overlap artificially inflates the probability of a walk “staying”

within its own community, as a walk starting from an influencer

has already reached its destination.
1
As shown in Figure 1, a simple

fix is to exclude influencers from the restart set, which corrects

the bias for random graphs. Although this “no-influencers” variant

works in this specific case, it is neither a principled nor a practical

solution. This is because (𝑖) there is no a priori way to define the

set of influencers within each community, and (𝑖𝑖) there is no prin-

cipled criterion for choosing how many influencers to include in

the set. These limitations motivate our work: to design a measure

that dispenses with the arbitrary notion of influencers and treats

all vertices equally [3], leading to a more robust and theoretically

sound assessment of structural polarization.

3 DSP: Improved Polarization Measure

This section introduces DSP, our new, principled measure for struc-

tural polarization. Similarly to previous polarization measures [9,

12], our measure employs as a core component a diffusion process

over the network. In particular, we quantify how the probability

mass of the diffusion process reaches the network communities

when starting from different source vertices. DSP is designed to

eliminate the biases of existing measures by removing the concept

of “influencers” and instead considering every vertex as a potential

source of diffusion. We start by defining a general diffusion process.

The diffusion process. For each vertex 𝑣 ∈ 𝑉 , consider a dif-

fusion process starting from 𝑣 , where the non-negative function

𝜙𝑣 : 𝑉 → R+
(see section 2.1) measures how information originat-

ing from 𝑣 spreads. The family of functions (𝜙𝑣)𝑣∈𝑉 is a parameter

of our framework. An effective choice for 𝜙𝑣 , which we adopt in

the remainder of this paper, is the random walk with restart (RWR)

vector with restart at 𝑣 . This choice connects our measure to the

methodology of RWC, where RWR is used to approximate how

1
In the original formulation, the set of influencers was negligible compared to the

network (10 in networks with thousands of vertices), so the bias was not apparent. In

smaller networks, or when using more influencers, this bias can be substantial.
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a user’s endorsement is distributed across the network. However,

other choices of 𝜙𝑣 are possible.

For a diffusion starting from a vertex 𝑣 ∈ 𝑉 , since we know that

𝑣 is the source of the diffusion, we want to set its score equal to

zero. Thus, to continue working with probabilities, for each 𝑣 ∈ 𝑉 ,

we define a probability distribution 𝜋𝑣 over 𝑉 , such that

𝜋𝑣 (𝑤) � 𝜙𝑣 (𝑤)∑
𝑢∈𝑉 \{𝑣} 𝜙𝑣 (𝑢)

for𝑤 ≠ 𝑣, and 𝜋𝑣 (𝑣) � 0.

Now, consider a thought experiment to model information flow

in the network. First, we pick a “source” vertex S uniformly at

random from𝑉 . Then, we pick a “target” vertex T by sampling from

the distribution 𝜋S. This two-step process defines a joint probability
distribution over all ordered pairs of distinct vertices (𝑣,𝑤) ∈ 𝑉 ×𝑉 .

Let us now define a function ℎ𝑄 (𝑣) as the probability that the

source S of a diffusion reaching 𝑣 belongs to community 𝑄 . Let, for

any 𝑄 ∈ {𝑅, 𝐵} and 𝑣 ∈ 𝑉 ,

ℎ𝑄 (𝑣) � Pr

S,T
(S ∈ 𝑄 | T = 𝑣) . (1)

We refer to ℎ𝑄 (𝑣) as the exposure of a single vertex 𝑣 to a commu-

nity 𝑄 ∈ {𝑅, 𝐵}. Using Bayes’ theorem, we can express ℎ𝑄 (𝑣) as a
function of the probability distributions 𝜋𝑣 :

Pr

S,T
(S ∈ 𝑄 | T = 𝑣) = Pr(T = 𝑣 | S ∈ 𝑄) Pr(S ∈ 𝑄)

Pr(T = 𝑣)

=

(
1

|𝑄 |
∑

𝑤∈𝑄 𝜋𝑤 (𝑣)
)
|𝑄 |
𝑛

1

𝑛

∑
𝑤∈𝑉 𝜋𝑤 (𝑣)

=

∑
𝑤∈𝑄 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣) .

Function ℎQ depends directly on the user-specified family (𝜙𝑣)𝑣∈𝑉 .
Example. In a political context, ℎ𝑅 (𝑣) represents the probability
that a piece of content or information reaching user 𝑣 originated

from the community 𝑅. A comparatively higher value of ℎ𝑅 (𝑣)
suggests that 𝑣 is overly exposed to “red opinions” as they prefer-

entially endorse that community. Conversely, if ℎ𝑅 (𝑣) and ℎ𝐵 (𝑣)
are balanced, user 𝑣 has a more diverse information diet.

Finally, we define a scoring function ℓ (𝑄, 𝑣) capturing whether
the exposure of vertex 𝑣 to community 𝑄 is a sign of polarization.

ℓ (𝑄, 𝑣) �
{
ℎ𝑄 (𝑣) if 𝑣 ∈ 𝑄,

−ℎ𝑄 (𝑣) if 𝑣 ∉ 𝑄.
(2)

The intuition is that, when considering the exposure of a source

of the same color as the target 𝑣 (i.e., 𝑣 ∈ 𝑄), a high probability

ℎ𝑄 (𝑣) is a sign of structural homophily and contributes positively

to polarization. When instead the source is of the opposite color

(𝑣 ∉ 𝑄) a high probability ℎ𝑄 (𝑣) is a sign of cross-cutting exposure

and contributes negatively.

A probing process for polarization. While the ℎ𝑄 (𝑣) functions
describe exposure at the vertex level, a network-level polarization

measure requires us to aggregate these values in a principled way.

To do this, we define a probing process that samples three random

variables: a target community QT, a probe target vertex Y, and a

source community QS. Formally,

• QT is a color chosen uniformly at random from {𝑅, 𝐵}.
• Y is a vertex chosen uniformly at random from community QT.

• QS is a community chosen from {𝑅, 𝐵} with a probability con-

ditional on Y and defined as

Pr(QS = 𝑅 | Y) � |𝐵 \ {Y}|
𝑛 − 1

, and Pr(QS = 𝐵 | Y) � |𝑅 \ {Y}|
𝑛 − 1

.

Intuition.Aswementioned before, this process is designed to test for

polarization systematically without needing to define influencers.

First, we select a target vertex Ywithout bias toward the larger com-

munity (by picking a color QT uniformly in {𝑅, 𝐵}). Then, when we

consider the origin of information, we choose a source community

QS with probability proportional to the size of the other community.

While this may seem counterintuitive, it serves to give more weight

to cross-community influence in unbalanced communities, where

otherwise, the smaller group could be drowned out. This design is

justified by the desirable properties of the resulting measure, such

as producing a zero score for a fully connected clique regardless of

the community sizes, as shown in Section 4.

The proposed polarization measure. Our new polarization mea-

sure combines the scoring function ℓ (𝑄, 𝑣) and the probing process
defined above. In particular, DSP is defined as the expected value

of the scoring function ℓ (𝑄, 𝑣) over the probing process:

DSP = EQT,Y,QS [ℓ (QS,Y)] . (3)

Intuition for DSP. In essence, DSP is the average score of how likely

a vertex is to receive information from a given community. This

average is over the distribution defined by our probing process.

Properties and expanded formulation. We now expand the

expression for DSP to analyze its properties. By the law of total

expectation, we can unroll the expectation in Equation (3).

DSP =
1

2

∑︁
Q∈{𝑅,𝐵}

EY,QS [ℓ (QS,Y) | QT = Q] .

Applying the law of total expectation again, we get

DSP =
1

2|𝑅 |
∑︁
𝑣∈𝑅

EQS [ℓ (QS, 𝑣) | Y = 𝑣,QT = 𝑅]

+ 1

2|𝐵 |
∑︁
𝑣∈𝐵

EQS [ℓ (QS, 𝑣) | Y = 𝑣,QT = 𝐵] .

Using the definition of conditional expectation, and the proba-

bility distribution for QS, we obtain

DSP =
1

2|𝑅 |
∑︁
𝑣∈𝑅

(
|𝐵 |

𝑛 − 1

ℎ𝑅 (𝑣) −
|𝑅 | − 1

𝑛 − 1

ℎ𝐵 (𝑣)
)

+ 1

2|𝐵 |
∑︁
𝑣∈𝐵

(
|𝑅 |

𝑛 − 1

ℎ𝐵 (𝑣) −
|𝐵 | − 1

𝑛 − 1

ℎ𝑅 (𝑣)
)
.

Combining Equation (1) with the previous equation, and mini-

mally rearranging the terms, we get

DSP = (4)

1

2|𝑅 |

(
|𝐵 |

𝑛 − 1

∑︁
𝑣∈𝑅

∑
𝑤∈𝑅 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣) −

|𝑅 | − 1

𝑛 − 1

∑︁
𝑣∈𝑅

∑
𝑤∈𝐵 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣)

)
+ 1

2|𝐵 |

(
|𝑅 |

𝑛 − 1

∑︁
𝑣∈𝐵

∑
𝑤∈𝐵 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣) −

|𝐵 | − 1

𝑛 − 1

∑︁
𝑣∈𝐵

∑
𝑤∈𝑅 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣)

)
.

Beyond its analytical utility for studying the properties of the DSP

measure, Equation (4) also provides a direct path for computation.

The equation shows that calculating DSP boils down to comput-

ing four aggregate diffusion scores: within-community (𝑅 → 𝑅,
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𝐵 → 𝐵) and cross-community (𝐵 → 𝑅, 𝑅 → 𝐵). When using ran-

dom walk with restart (RWR) for the diffusion scores 𝜋𝑣 (𝑤), it
is required to compute the RWR vector restarting from each ver-

tex𝑤 ∈ 𝑉 . The values of these vectors at each target vertex 𝑣 are

then summed according to the community memberships of 𝑣 and

𝑤 . While computationally intensive, it is possible to use sampling-

based approximations to speed up the computation.

Range. The range of DSP is (− 1

2

𝑛−2
𝑛−1 ,

1

2

𝑛
𝑛−1 ). The maximum is at-

tained when diffusions from a community only reach vertices

within that same community, the hallmark of extreme structural

polarization. The minimum is attained when diffusions only reach

vertices of the opposite community. A key advantage of DSP is that

negative values are clearly interpretable: they indicate that, on av-

erage, the network structure promotes cross-community diffusion

more than within-community diffusion. This is a more intuitive

interpretation than for previously proposed measures.

To see why, assume that for every 𝑣 ∈ 𝑅 it is

∑
𝑤∈𝑅 𝜋𝑤 (𝑣) = 1,

and for every 𝑣 ∈ 𝐵 it is

∑
𝑤∈𝐵 𝜋𝑤 (𝑣) = 1. It is easy to see that

these assumptions maximize the value of DSP to be

1

2

𝑛

𝑛 − 1

→ 1

2

, as 𝑛 → +∞.

The minimum value for DSP is

−1

2

𝑛 − 2

𝑛 − 1

→ −1

2

, as 𝑛 → +∞,

attained when, for every 𝑣 ∈ 𝑅 it is

∑
𝑤∈𝐵 𝜋𝑤 (𝑣) = 1, and for every

𝑣 ∈ 𝐵 it is

∑
𝑤∈𝑅 𝜋𝑤 (𝑣) = 1.

More than two colors. It is possible to extend the DSP definition

to the general case of 𝑘 ≥ 2 colors. Reusing the same notation as

above, we need to define the following random variables:

• QT, a color chosen u.a.r. from the set of possible colors;

• Y, a vertex chosen u.a.r. from the community QT;

• QS, a set of vertices chosen from the bi-partition {QT,𝑉 \ QT},
according to the following conditional probabilities

Pr(QS = QT | QT) =
|𝑉 \ QT |
𝑛 − 1

, and

Pr(QS = 𝑉 \ QT | QT) =
|QT | − 1

𝑛 − 1

.

Now, for any 𝑣 and possible community (i.e., color) 𝑄 , define

ℓ (𝑄, 𝑣) �
{
ℎc(𝑣) (𝑣) if 𝑄 = c(𝑣),
−

(
1 − ℎc(𝑣) (𝑣)

)
otherwise.

Finally, we define

DSP � EQT,Y,QS [ℓ (QS,Y)] . (5)

With 𝑘 ≥ 2 colors, the range of the DSP is roughly (−1/𝑘 , 1/𝑘). These
definitions collapse to the previous ones when 𝑘 = 2.

4 Analysis on Synthetic Data

In this section, we prove that DSP behaves as desired on a set

of reference network topologies and network null models. As pre-

sented in the previous section, the DSPmeasure assumes a diffusion

process over the network. In this section, for concreteness, we in-

stantiate the generic 𝜙𝑣 functions using a random walk with restart

(RWR) with restart probability 1 − 𝛼 as diffusion process.
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Figure 2: Polarization in a bi-colored clique with 5000 vertices

and partitions of different sizes: 50% red–50% blue, and 90%

red–10% blue. The dashed line denotes the desired value of 0.

In the following charts, to compare the various polarization mea-

sures while respecting their semantics, we normalized their values

to a common interval. Measures that capture both the magnitude

and direction of polarization are rescaled to the interval [−1, 1],
preserving the neutral point at 0, whereas measures that quantify

only the magnitude of polarization are normalized to [0, 1] to avoid
introducing artificial directionality. Finally, for the experiments in

this section, we set the number of influencers in RWC to 10, and in

its adaptive variant (ARWC) to 10% of the network’s vertices.

4.1 Reference Network Topologies

We consider three types of networks: cliques, color-alternating cycles,
and monochromatic-splittable networks (defined below). These spe-

cific networks have a simple enough structure that enables deriving

the exact solution of the DSP polarization measure.

Clique. A clique of 𝑛 vertices, arbitrarily partitioned into 𝑅 and 𝐵,

possibly with |𝑅 | ≠ |𝐵 |, should exhibit no structural polarization:

every vertex is connected to every other vertex, so every vertex has

the same opportunities of accessing content (or interacting with

vertices) from its own partition as it does from the other partition.

It holds that 𝜋𝑣 (𝑤) = 1/(𝑛 − 1) for every 𝑣 ∈ 𝑉 and every 𝑤 ∈
𝑉 \{𝑣}, and 𝜋𝑣 (𝑣) = 0 as required (see Section 3). The denominators

of Equation (4) are therefore all equal to 1, while the four numerators

are, in order, ( |𝑅 | − 1)/(𝑛 − 1), |𝐵 |/(𝑛 − 1), ( |𝐵 | − 1)/(𝑛 − 1), and
|𝑅 |/(𝑛 − 1). Thus, we can express DSP as

DSP =
1

2|𝑅 |

(
|𝐵 |

𝑛 − 1

|𝑅 | |𝑅 | − 1

𝑛 − 1

− |𝑅 | − 1

𝑛 − 1

|𝑅 | |𝐵 |
𝑛 − 1

)
+ 1

2|𝐵 |

(
|𝑅 |

𝑛 − 1

|𝐵 | |𝐵 | − 1

𝑛 − 1

− |𝐵 | − 1

𝑛 − 1

|𝐵 | |𝑅 |
𝑛 − 1

)
= 0 .

Figure 2 shows the polarization values in a bi-colored clique with

5000 vertices and two partition ratios: one balanced (50% red, 50%

blue) and one unbalanced (90% red, 10% blue). We observe that RWC

and its adaptive variant ARWC exhibit a positive bias. In contrast,

the other measures yield the desired polarization score of 0, except

for DM, which also presents a positive bias on balanced partitions,

and EI and CCA, which are sensitive to community size imbalance

and yield positive scores when the partition is unbalanced.

Color-alternating Cycle. A color-alternating cycle is a cycle net-

work with (even) 𝑛 vertices, which are evenly split between 𝐵 and 𝑅,

and placed in an alternating fashion, i.e., each vertex 𝑣 has exactly

two neighbors, both of which have a color different from its own.
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Figure 3: Polarization in a bi-colored alternating cycle with

5000 vertices, 50% red–50% blue. We show the rescaled values

and the rescaled denoised values computed using the 1𝑘-

series [32]. The gradient area indicates the desired scores.

A negative polarization is expected in this network, because each

vertex is directly connected to only vertices of the other color, and

thus it is more likely to access content (and interact with vertices)

from the other color than its own.

The high level of symmetry in such a network implies that there

is a positive 𝑧 = 𝑧 (𝑛, 𝛼) ∈ (0, 1) such that, for every vertex 𝑣 ∈ 𝑉 ,

it holds that ℎc(𝑣) (𝑣) = 𝑧 and ℎc(v) (𝑣) = 1 − 𝑧. By plugging 𝑧 in

Equation (4), we obtain

DSP =
1

2

(
|𝐵 |

𝑛 − 1

𝑧 − |𝑅 | − 1

𝑛 − 1

(1 − 𝑧)
)

+ 1

2

(
|𝑅 |

𝑛 − 1

𝑧 − |𝐵 | − 1

𝑛 − 1

(1 − 𝑧)
)
= 𝑧 − 1

2

𝑛 − 2

𝑛 − 1

.

A lower value of 𝛼 for 𝜙𝑣 (a RWR that restarts more often) leads

to a lower value of 𝑧. As 𝑧 is a probability, it is bounded below by

zero, thus allowing us to recover the lower bound on the range of

DSP as − 1

2

𝑛−2
𝑛−1 as 𝛼 goes to zero.

Figure 3 shows the polarization values in a bi-colored alternating

cycle with 5000 vertices, evenly split between red and blue. We also

include the denoised [32] polarization scores. The chart displays a

gradient area to indicate the desired direction of polarization. As

in the clique experiment, RWC and ARWC display a positive bias.

We observe that the denoising often worsens the results: measures

that initially yield negative values become less negative—or even

turn positive—after applying the proposed correction.

Monochromatic-splittable Networks. A monochromatic-split-

table network is a network with a cut that splits the network into

exactly two connected components, each monochromatic, i.e., con-

taining only vertices of one of the two colors. As long as at least one

of |𝑅 | or |𝐵 | is much larger than the size of the cut, these networks

exhibit strongly positive polarization, because all but a few vertices

of each color are connected only to vertices of the same color, and

thus most interactions are between homochromatic vertices. As 𝛼

decreases, then the components of Equation (4)∑︁
𝑣∈𝑅

∑
𝑤∈𝑅 𝜋𝑤 (𝑣)∑
𝑤∈𝑉 𝜋𝑤 (𝑣) → |𝑅 | ,

and similarly for 𝐵. The rationale is the same for the alternating

cycle: smaller 𝛼 values lead to more importance for the immediate

neighbors of the starting vertex, which, in this case, are vertices

with the same color as the starting vertex. Thus, the value of DSP

tends to its maximum attainable value
𝑛

2(𝑛−1) , as these are exactly
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Figure 4: Polarization in a bi-colored half-split cycle with 5000

vertices and two partition sizes: 50% blue–50% red (left), and

90% red–10% blue (right). We show the rescaled and rescaled-

denoised values computed using the 1𝑘-series [32]. The gra-

dient area indicates the desired scores.
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Figure 5: Polarization in a bi-colored half-split barbell net-

work with 2000 vertices and two partition sizes: 50% blue–

50% red (left), and 90% red–10% blue (right). We show the

rescaled and rescaled-denoised values computed using the

1𝑘-series [32]. The dashed line denotes the desired value of 1.

the conditions that we assumed when analyzing the range of DSP

(recall that DSP ∈ ( − 1/2 , 1/2) approximately).

When the two connected components are of the same size (i.e.,

|𝑅 | = |𝐵 | = 𝑛/2), and isomorphic, then a more precise analysis is

possible. Examples of such networks are the half-split cycle network

obtained by connecting both ends of two monochromatic chains

(one red and one blue) of the same size, or a “barbell network” where

two monochromatic cliques of the same size are connected by a

chain network that is half of one color and half of the other color.

In these cases, symmetry implies that there are non-negative values

𝑧1 = 𝑧1 (𝑛, 𝛼) and 𝑧2 = 𝑧2 (𝑛, 𝛼) such that

DSP =
1

2|𝑅 |

(
|𝐵 |

𝑛 − 1

𝑧1 −
|𝑅 | − 1

𝑛 − 1

𝑧2

)
+ 1

2|𝐵 |

(
|𝑅 |

𝑛 − 1

𝑧1 −
|𝐵 | − 1

𝑛 − 1

𝑧2

)
=
1

𝑛

(
|𝐵 | + |𝑅 |
𝑛 − 1

𝑧1 −
|𝑅 | + |𝐵 | − 1 − 1

𝑛 − 1

𝑧2

)
=

1

𝑛 − 1

𝑧1 −
1

𝑛

𝑛 − 2

𝑛 − 1

𝑧2 .

It holds

𝑧1 + 𝑧2 =
∑︁
𝑦∈𝑅

∑
𝑖∈𝑅 𝜋𝑖 (𝑦)∑
𝑖∈𝑉 𝜋𝑖 (𝑦)

+
∑︁
𝑦∈𝑅

∑
𝑖∈𝐵 𝜋𝑖 (𝑦)∑
𝑖∈𝑉 𝜋𝑖 (𝑦)

=
∑︁
𝑦∈𝑅

∑
𝑖∈𝑅 𝜋𝑖 (𝑦)∑
𝑖∈𝑉 𝜋𝑖 (𝑦)

= |𝑅 | = 𝑛

2

.

Thus, we can express 𝑧2 as 𝑛/2 − 𝑧1. Continuing from Equation (4),

DSP =
1

𝑛 − 1

𝑧1 −
1

𝑛

𝑛 − 2

𝑛 − 1

(𝑛
2

− 𝑧1

)
=

2

𝑛
𝑧1 −

1

2

𝑛 − 2

𝑛 − 1

.
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Figure 6: DSP in 1000 random networks extracted from

𝐺 (𝑛, 𝑝, ℓ) for different average degrees 𝑑 and partition sizes

ℓ (𝑅) ∈ {50%, 70%, 90%}. We set 𝑛 = 10 000 and 𝑝 = 𝑑/𝑛 − 1.

Table 3: Polarization in 1000 random networks from𝐺 (𝑛, 𝑝, ℓ)
for different average degrees 𝑑 and partition sizes ℓ (𝑅) ∈
{50%, 70%, 90%}. We set 𝑛 = 10 000 and 𝑝 = 𝑑/𝑛 − 1.

Metric

𝑑 |𝑅 | (%) AEI ARWC BCC BP CCA Col-Ass DM EI Q RWC

3

50 0 0.115 0.298 -0.187 0 -0.001 0.444 0 0 0.079

70 0 0.115 0.299 -0.039 0.161 -0.001 0.194 0.160 0 0.080

90 -0.001 0.115 0.303 0.260 0.634 0 0.050 0.640 0 0.088

6

50 0 0.106 0.115 -0.416 0 0 0.264 0 0 0.078

70 0 0.106 0.115 -0.184 0.161 0 0.076 0.160 0 0.079

90 0 0.106 0.115 0.344 0.640 0 0.021 0.640 0 0.085

9

50 0 0.108 0.070 -0.572 0 0 0.214 0 0 0.082

70 0 0.108 0.070 -0.342 0.160 0 0.052 0.160 0 0.083

90 0 0.108 0.071 0.337 0.640 0 0.018 0.640 0 0.089

The value 𝑧1, which is a function of 𝑛 and 𝛼 , increases as 𝛼

decrease. As 𝑧1 is upper bounded by
𝑛
2
, we recover the upper bound

on the range of DSP as
1

2

𝑛
𝑛−1 .

Figure 4 presents the polarization values in a bi-colored half-

split cycle with 5000 vertices, for two partitioning schemes: one

with equal-sized red and blue groups, and another with a 90%-10%

split. As before, the figure includes the rescaled denoised polariza-

tion scores computed using the 1𝑘-series correction method. The

gradient area highlights the desired direction of polarization. We

observe that all measures yield positive scores for both partition-

ing scenarios; however, in several cases, the denoising approach

reduces these values, hence worsening their performance. DSP con-

sistently achieves the highest possible score, along with a few other

measures.

Figure 5 reports results for a bi-colored half-split barbell network

with 2000 vertices, again using both balanced and 90%–10% parti-

tions. Rescaled denoised scores are also shown. The black dashed

line represents the desired polarization value of 1. Most measures

correctly reach this value in the balanced case, but performance

tends to degrade—particularly after denoising—in the unbalanced

setting. Overall, denoising [32] often moves the polarization scores

away from their ideal values rather than correcting them. Across all

scenarios, only two measures consistently align with the expected

behavior: DSP and AEI.

4.2 The 𝐺 (𝑛, 𝑝, ℓ) Null Model

The 𝐺 (𝑛, 𝑝, ℓ) model is an extension of the classical Erdős-Rényi

randomnetwork𝐺 (𝑛, 𝑝), which generates a networkwith𝑛 vertices,
each pair of which is connected with probability 𝑝 (0 ≤ 𝑝 ≤ 1).
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Figure 7: DSP measured in 100 networks sampled from the

SBM with 1600 vertices and 2 blocks.

In this extension, we introduce labels for the vertices. Let L �
[ℓ1, ℓ2, . . . , ℓ𝑘 ] be the list of labels. The null model assigns the 𝑘

labels uniformly at random to the vertices, subject to the constraint

that exactly ℓ (𝑖) vertices receive label ℓ𝑖 .
The key property of this null model is that vertex labels are inde-

pendent of the network structure, or, in other words, the edge place-

ment process does not consider vertex labels. Thus, any observed

association between labels and structural properties is purely due

to chance. For this reason, any reasonable structural polarization

measure should return, on expectation, zero or near-zero values.

Figure 6 shows the distribution of DSP values measured in 1000

random networks extracted from 𝐺 (𝑛, 𝑝, ℓ) with 𝑛 = 10 000, differ-

ent average degrees (which determines 𝑝), and different partition

skews. The average DSP score is close to 0 with minimal deviations

for all average degrees and partition skews, proving the robustness

of the measure to the partition size and network density.

Table 3 reports the average scaled scores for the other polariza-

tion measures. As expected, Q yields an average score of 0, since

it uses an Erdős-Rényi network as its null model. Consistent with

previous observations, RWC and ARWC exhibit a positive bias, as

do EI, BCC, CCA, and DM. In contrast, BP shows a negative bias.

Among the other measures, only AEI consistently produces the

desired near-zero values across all conditions.

4.3 The Stochastic Block Model

To further test the robustness of DSP, we generate random networks

using a stochastic block model (SBM) with 𝑛 vertices assigned uni-

formly at random to 2 blocks. The degree distribution follows a

Poisson distribution, with intra-block edge probability 𝑝 and inter-

block edge probability 𝑞. Higher values of 𝑝 , especially when paired

with lower values of 𝑞, correspond to higher structural polariza-

tion. In contrast, increasing 𝑞 leads to greater inter-community

connectivity, hence reducing structural polarization.

Figure 7 shows DSP for 100 random networks with 1600 vertices,

varying 𝑝 and 𝑞. DSP behaves as expected: it increases with denser

intra-community connectivity and decreases as inter-community

connectivity increases. For a fixed intra-community connectivity,

lower inter-community connectivity gives higher scores.

5 Experiments on real-world data

In section 4 we examined how DSP behaves on our reference net-

works, where the ground-truth polarization is known. In this section

we consider real-world networks. First, we evaluate whether DSP
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Figure 8: ROC curves and AUC values for salloum.

can effectively distinguish between polarized and non-polarized net-

works and achieve classification performance comparable to that of

existing polarization measures. Next, we study the performance of

an approximate version of DSP that computes the measure consid-

ering only a sample of the network’s vertices. This approximation

aims to reduce computational cost while maintaining accuracy.

Then, we investigate the relationship between assortativity and

DSP, via a null model that preserves the color assortativity of the

given network [31]. Finally, we present a case study on political po-

larization using bill co-sponsorship data and roll-call voting records.

The code is available on GitHub.
2

Datasets. We consider several collections of real-world networks.

salloum [32] is a collection of 183 polarized and non-polarized

Twitter retweet networks—150 constructed from single hashtags

and 33 from multiple hashtags—collected during the 2019 Finnish

Parliamentary Elections. congress-bill-cosp [1] is a set of net-

works based on bill co-sponsorship data in the US Congress, cov-

ering the 93rd to the 114th Congresses. Each edge connects two

legislators, with edge weights indicating the number of times they

co-sponsored a bill or joint resolution [30]. congress-bill-roll-

call [20] is a set of networks constructed from roll-call voting

records in the US Senate and House for the 93rd to 114th Con-

gresses. As with the co-sponsorship dataset, we consider only bills

and joint resolutions. Edges connect legislators who voted identi-

cally; edge weights denote the number of such instances.

For vertex labels, for congress-bill-cosp and congress-bill-

roll-call, we use the legislators’ political parties (Democrat or

Republican). For salloum, we generate vertex labels using a graph

partitioning algorithm, as commonly done in prior work [9]. We

employ the Kernighan—Lin algorithm (KLIN) [17] and METIS [16].

Classification performance.We assess how well each polariza-

tion measure distinguishes polarized from non-polarized networks

using the score as the output of a probabilistic classifier [32]. Each

decision threshold yields a false positive and true positive rate,

and varying the threshold produces a ROC curve that captures the

discriminative power of each measure. In Figure 8 we report the

unnormalized Area Under the Curve (AUC) as a summary metric

of predictive accuracy. Also in this experiment, we set the number

of influencers in RWC to 10, and in ARWC to 10% of the network’s

vertices. While DSP is designed as a statistically principled reformu-

lation of RWC, the purpose of this experiment is not to demonstrate

empirical superiority, but to verify that DSP preserves RWC ’s prac-

tical discriminative ability. Results show that DSP achieves AUC

2
https://github.com/lady-bluecopper/diffusionBasedStructuralPolarization
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Figure 9:MAEof the approximateDSP scores computed using

subsets of vertices of different size (left); and corresponding

ROC curves (right).
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Figure 10: DSP scores and average values computed over 100

random networks from the configuration model (CM) and

the Polaris model [31] on the salloum dataset.

values close to those of RWC, suggesting that adopting a more rigor-

ous and unbiased formulation does not compromise the predictive

performance observed in earlier metrics.

ApproximateDSP.To evaluate the trade-off between accuracy and

efficiency in computing the DSP score, we compare the exact score

to a heuristic approximation obtained by calculating the summa-

tions in Equation (4) over a uniform random sample of the network

vertices. Computing the RWR for every vertex in the network be-

comes computationally expensive as the network size increases. By

considering only a subset of vertices, we aim to reduce computation

time while incurring a small loss in accuracy. In this experiment,

we consider a subset of 61 datasets from salloum and, for each

one, extract 50 random vertex samples with varying sample sizes.

For each sample, we compute the approximate DSP score and then

report the Mean Absolute Error (MAE).

In our experiments below, we seek to estimate the empirical

number of samples required to obtain a good approximation as a

fraction of the network size. From a theoretical point of view, it is

plausible that the required number of samples (sample complexity)

is determined by a function that grows sublinearly with respect to

the network size. We leave the question of theoretically deriving

the sample complexity as future work. Figure 9 (top) shows that

we need to retain at least 20% of the vertices to achieve a good

approximation of the original score. To reduce variability in the

approximation across samples, we should retain at least 40% of the

vertices. Finally, the chart on the right shows that the ROC curves

and the corresponding AUC values are roughly the same across

sample sizes, indicating that even when using a small vertex set, the

score has the same capability of distinguishing between polarized

and non-polarized networks.

Color assortativity vs. polarization.We compare the DSP values

measured on real datasets with those obtained from 100 samples

https://github.com/lady-bluecopper/diffusionBasedStructuralPolarization
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Figure 11: DSP and its 3-point moving average for both chambers across Congress sessions.

generated using Polaris [31], an algorithm that samples from the

ensemble of networks with the same degree sequence and color

assortativity. Figure 10 illustrates how well DSP is preserved under

the Polaris null model. The chart shows the value of DSP measured

in the salloum networks and the average values computed over 100

random networks from two null models: the configuration model

(CM) and the Polaris null model. When the bars corresponding to

the two null models are close, it indicates that color assortativity has

little influence on the DSP value, since both models yield similar re-

sults despite one preserving assortativity and the other not. On the

other hand, the closer the Polaris bar is to the observed value, the

more color assortativity can explain the polarization captured by

DSP. A large gap between the observed value and the Polaris base-

line suggests that other structural or behavioral dynamics, beyond

color assortativity, are contributing to the network’s polarization.

Overall, networks with higher polarization levels tend to show a

stronger influence from color assortativity, as the Polaris baseline

is closer to the observed value as polarization increases. Meanwhile,

the influence of the degree distribution remains relatively constant

across datasets, as indicated by the consistent gap between the

CM baseline and the observed values. Nonetheless, the differences

between the observed and Polaris values in less polarized networks

suggest that color assortativity alone is insufficient to fully account

for the observed polarization, especially when the score is low.

Polarization in the US Congress.We study how political polar-

ization evolves andwhether it correlates with the political control of

the chambers of the US Congress [30]. We construct two sets of bi-

colored networks: one based on bill co-sponsorship data (congress-

bill-cosp) and the other on roll-call voting data (congress-bill-

roll-call), for each chamber of Congress (Senate and House) and

each session of Congress from the 93rd to the 114th. To reduce noise

from widely co-sponsored legislation, we discard bills with more

than 25 co-sponsors. We focus on two legislative types, i.e., Bills

and Joint Resolutions, as both require passage by both chambers

and the President’s signature to become law. These types are most

likely to reflect strategic behavior relevant to polarization analysis.

We compute DSP on each of these networks. In this setting, the

RWR vectors used in the computation of DSP incorporate edge

weights, i.e., co-sponsorship/co-voting frequency influences the

random walk behavior. This choice enables the polarization mea-

sure to capture stronger ties.

Figure 11 shows the DSP score for each session of Congress,

separately for the Senate (top) and the House (bottom). The back-

ground color of each bar indicates which party held the majority in

each chamber during that session, where darker colors correspond

to stronger majorities. The figure also reports a moving average

(window size 3) to smooth trends across Congress sessions (dashed

line). Both co-sponsorship and roll-call voting data provide valuable

yet distinct insights into the legislators’ preferences. Roll-call votes

are recorded decisions that offer a clear signal of preference. In

contrast, bill co-sponsorship is a voluntary activity that indicates

a positive disposition toward a bill; however, the absence of co-

sponsorship has no clear interpretation. Despite these differences,

previous work [2] showed that co-sponsorship data can produce

estimates of ideal points that are highly correlated with those de-

rived from roll-call votes. Consistently, we observe correlated DSP

scores between the two types of congress networks, especially in

the House, where both Pearson (0.73) and Spearman (0.70) are high.

In the Senate, while Pearson is lower (0.59), Spearman remains high

(0.74), indicating a strong agreement in trend.

Similarly, our findings on the bill-cosponsorship networks align

with previous studies [15], as we also observe low polarization

levels (DSP remains below 0.16 across all sessions). This result is

expected, as DSP is a structural measure, and thus, will yield high

values only when the network presents a strong structural divi-

sion. Nonetheless, consistent with previous research, we observe a

general increase in polarization over time [10].

6 Conclusion

We introduce DSP, a statistically principled structural polariza-

tion measure, based on a probing process of information diffusion

spreading as randomwalks from each vertex. It does not suffer from

the biases exhibited by previous measures, as we show by analyti-

cally deriving DSP values on families of reference networks. The

results of our experimental evaluation highlight how DSP can reli-

ably differentiate between polarized and non-polarized networks.

Interesting directions for future work include deriving additional

properties of DSP on more reference classes, and using DSP to rec-

ommend edges to add to the network to reduce polarization [11, 14].
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Ethical Considerations

The proposed DSP measure is designed as a diagnostic tool to help

researchers, platforms, and policymakers better understand and

identify structural polarization, a phenomenon with significant

societal consequences. However, like any technology that measures

social dynamics, it can be used for purposes other than its intended

goal. A primary concern is the potential for misuse by malicious

actors. For instance, a sophisticated entity could leverage DSP to

identify highly polarized and vulnerable communities to more effec-

tively target them with tailored misinformation, deepening societal

divisions for political or financial gain. Similarly, an authoritarian

regime could use this measure to detect and justify the suppres-

sion of dissenting groups by labeling their cohesive, self-contained

networks as a source of dangerous polarization, thereby using the

metric as a pretext for censorship or control.

Beyond malicious use, harms can arise even when DSP is used

as intended. A quantitative score, no matter how statistically princi-

pled, is an abstraction of complex social reality. There is a risk that

a high polarization score could be used to stigmatize a community,

leading to oversimplified judgments and a lack of a nuanced, quali-

tative understanding of that community’s context. For example, a

marginalized group may form a dense, insular network for mutual

support, which could be misread as structural polarization. Further-

more, interventions designed to decrease a network’s DSP score

could have unintended negative consequences if applied naively.

An automated system aimed at “depolarizing” a network might

suggest interventions that disrupt vital community ties. To mitigate

these risks, we stress that DSP should be used as a diagnostic aid,

not a definitive verdict. Its findings must be interpreted within a

broader socio-political context, and any interventions based on it

should be human-centric and subject to ethical review to ensure

they do not harm the communities they intend to help.
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